期刊文献+

一种用于车牌识别的图像超分辨率重建技术 被引量:1

IMAGE SUPER-RESOLUTION RECONSTRUCTION FOR LICENCE PLATES RECOGNITION
下载PDF
导出
摘要 获取的车牌图像因分辨率过低、过量模糊和噪声等原因会导致其图像质量较低,影响了车牌识别的准确率。为了提高车牌识别的准确率,采用基于学习的超分辨率重建算法增强低质车牌图像。引入在线字典学习方法训练超完备字典,并制作适合于车牌超分的训练图集,根据低质车牌图像重建高分辨率车牌,按照既定的模板匹配方法进行车牌识别。实验表明,超分方法的PSNR和SSIM比经典的SCSR(Sparse Coding Super-Resolution)法都有明显提升,车牌识别率也比SCSR提高了5.0%。可见,所提出的算法较好地增强了低质车牌的图像质量,有效地提高了识别率。 Some captured license plate images are low-quality because of the low-resolution,blur and noise which affects the recognition accuracy. In order to prove the recognition accuracy,the proposed method employs the sample-based super-resolution to enhance the low-quality licence plate images. It produces the training image set which is suitable for plate recognition and introduces Online Dictionary Learning to get the over complete dictionaries. After the reconstruction of the high-resolution plate image from a low-quality one,the defined template matching method recognizes the plate numbers well. The experiments show that the PSNRs and SSIMs of the proposed method are better than the classical SCSR. The percentage of the plate recognition accuracy is 5. 0% higher than SCSR. So the proposed method can enhance the low-quality images and prove the recognition accuracy effectively.
出处 《计算机应用与软件》 CSCD 2016年第11期208-211,262,共5页 Computer Applications and Software
基金 国家自然科学基金项目(61271256) 湖北省高等学校优秀中青年科技创新团队计划项目(T201513) 湖北省自然科学基金项目(2015CFB452) 湖北省教育厅科研计划指导性项目(B2015080) 湖北科技学院校级科研项目(KY13048)
关键词 超分辨率 车牌识别 在线字典学习 稀疏编码 Super-resolution License plate recognition Online dictionary learning Sparse coding
  • 相关文献

参考文献2

二级参考文献23

  • 1王夏黎,周明全,耿国华.一种基于HSV颜色空间的车辆牌照提取方法[J].计算机工程,2004,30(17):133-135. 被引量:22
  • 2迟晓君,孟庆春.基于投影特征值的车牌字符分割算法[J].计算机应用研究,2006,23(7):256-257. 被引量:60
  • 3中华人民共和国公安部.GA36-2007,中华人民共和国机动车号牌[S].2007.
  • 4Park S C, Park M K, Kang M G. Super-resolution image reconstruction: a technical overview E J 1- IEEE Signal Processing Magazine, 2003, 20 (3) :21-36.
  • 5姚振杰,易卫东.多传感器高精度图像融合算法[J].计算机科学,2009,36(10A):265-268.
  • 6Tsai R Y, Huang T S. Multiple frame image restoration and registration[ C ] //Advances in Computer Vision and Image Processing. Greenwich: JAI Press, 1984: 317-339.
  • 7Stark H, Oskoui P. High-resolution image recovery from imageplane arrays, using convex projections [ J]. Journal of Optical Society of America A, 1989, 6 ( 11 ) : 1715-1726.
  • 8Freeman W T, Pasztor E C. Learning low-level vision [ C]// Proceedings of Seventh International Conference on Computer Vision. Corfu: IEEE, 1999: 1182-1189.
  • 9Yang J C, Wright J, Huang T S, et al. Image superresolution via sparse representation[ J]. IEEE Transactions on Image Processing, 2010, 19 ( 11 ) : 2861-2873.
  • 10Kim K I, Kwon Y. Single-image super-resolution using sparse regression and natural image prior[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32 (6):1127-1133.

共引文献25

同被引文献5

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部