摘要
社会网络包括以兴趣为核心的兴趣网络和以信任为核心的信任网络。如何利用社会网络中用户信任与兴趣相似的好友的项目数据来扩展用户本身的项目数据集,缓解用户数据稀疏性,利用目标用户的好友的项目评分数据为其产生推荐,是研究的重点。和传统的推荐方法相比,提出一种改进模型SIMTM(Similar and Trust Model)来提供用户更加高效的推荐体验。该模型融合用户兴趣度和信任度作为初始亲密程度,根据融合后的好友网络进行推荐,同时根据推荐反馈,来不断地优化用户的项目评分数据集,使得亲密的用户好友更加亲密,过滤掉用户的普通好友,优化用户之间的兴趣和信任关联;并重新计算用户之间的亲密程度形成融合用户与其好友的融合网络,直至前后两次根据亲密程度得到的推荐结果相近,根据得到的最优的亲密程度构建融合网络来进行推荐。实验结果表明,该模型在数据稀疏的情况下,能有效提高用户推荐的准确率和覆盖率。
Social networks include the interest network taking the interest as core and the trust network taking the trust as core. The research focus of this paper is that how to use the projects data of the friends in social networks with similar trust and interest to expand the project dataset of user's own,to alleviate the sparsity of user data,and to use the data of project rating score of target user's friends to generate recommendation for it. Compared with traditional recommendation methods,the paper presents an improved SIMTM( Similar and Trust Model),which can provide more efficient recommendation experience. The model fuses interest and confidence as the initial intimacy,and makes recommendation according to the fused networks of friends,at the same time it constantly optimises the project rating score dataset according to the recommended feedbacks,this makes user's close friends be more intimate while filtering out user's ordinary friends,and optimises the association of interest and trust between user,moreover it re-calculates the intimacy degree between users to form a fusion network which fuses the user and user's friends until the twice recommendation results before and the after derived from intimacy degree are close,and then constructs the fusion network based on the derived optimal intimacy degree for recommendation. Experimental results show that,the model can effectively improve the accuracy and coverage of recommendation of users,especially in the case of data sparsity.
出处
《计算机应用与软件》
CSCD
2016年第11期258-262,共5页
Computer Applications and Software
关键词
社会网络
兴趣网络
信任网络
融合网络
推荐反馈
信任更新
Social network
Interested network
Trust network
Fusion network
Recommendation feedback
Trust update