期刊文献+

基于模型选择的差异基因和异构体检测 被引量:2

Differential Expression Analysis of Genes and Isoforms Based on Model Selection
下载PDF
导出
摘要 基因和异构体差异表达分析是获取基因和异构体功能的重要途径,现已成为生物信息学的一个重要领域。RNA-seq是一种高通量测序技术,近年来广泛用于转录组研究。RNA-seq数据的读段多源映射现象给差异异构体检测带来挑战。针对该问题,本文采用先计算基因和异构体的表达水平,再进行差异分析的方法,以计算表达水平的PGseq模型为基础,采用贝叶斯因子方法进行模型选择,提出一个新的差异检测方法 PG_bayes,解决了基因和异构体两方面的差异检测问题。将PG_bayes应用于人类和小鼠共4个真实数据集中,并与目前流行的差异检测方法进行对比。实验结果表明,PG_bayes方法在差异基因和差异异构体检测中具有较高的准确度和灵敏度,并且在差异异构体检测方面表现出优势。 Differential expression analysis of genes and isoforms is important in obtaining the function of genes and isoforms,thus becoming an essential research focus of bioinformatics.RNA-seq is a new experimental technique based on high-throughput sequencing and is increasingly used in transcriptome research.Read-isoform multi-mappings make it difficult to detect differential expression of isoforms.Here,we proposed a new method,called PG_bayes,to detect differential expression for both genes and isoforms.PG_bayes,based on expressions estimation method PGseq,uses a Bayes factor model selection method to detect differential expression.We applied PG_bayes to three human datasets and one mouse dataset,and compared its performance with popular alternatives.Results show that PG_bayes performs favorably in sensitivity and specificity at both gene and isoform levels.
出处 《数据采集与处理》 CSCD 北大核心 2016年第5期965-973,共9页 Journal of Data Acquisition and Processing
基金 国家自然科学基金(61170152)资助项目 中央高校基本科研业务费专项(CXZZ11_0217)资助项目
关键词 RNA-SEQ 差异检测 多源映射 模型选择 贝叶斯因子 RNA-seq differential expression analysis multi-mapping model selection Bayes factor
  • 相关文献

参考文献19

  • 1Wang Z,Gerstein M,Snyder A M.RNA-Seq:A revolutionary tool for transcriptomics[J].Nature Reviews Genetics,2008,10(1):57-63.
  • 2Richard H,Schulz M H,Sultan M,et al.Prediction of alternative isoforms from exon expression levels in RNA-Seq experi-ments[J].Nucleic Acids Res,2010,38(10):e112.
  • 3Wang L G,Xi Y X,Yu J,et al.A statistical method for the detection of alternative splicing using RNA-Seq[J].PLoS one,2010,5-(1):e8529.
  • 4刘学军,李蒙,张礼.一种针对RNA-Seq数据的基因异构体表达水平计算方法[J].中国生物医学工程学报,2013,32(4):454-463. 被引量:3
  • 5Anders S,Huber W.Differential expression analysis for sequence count data[J].Genome Biology,2010,11(10):R106.
  • 6Hardcastle T J,Kelly K A.Bay-Seq:Empirical Bayesian methods for identifying differential expression in sequence count da-ta[J].BMC Bioinformatics,2010,11:422-439.
  • 7Turro E,Su S Y,Gonalves,et al.Haplotype and isoform specific expression estimation using multi-mapping RNA-Seqreads[J].Genome Biol,2011,12(2):R13.
  • 8石新新,刘学军,张礼.改进的RNA-Seq数据转录组表达分析研究[J].数据采集与处理,2015,30(5):1028-1035. 被引量:3
  • 9Glaus P,Honkela A,Rattray M.Identifying differentially expressed transcripts from RNA-Seq data with biological variation[J].Bioinformatics,2012,28(13):1721-1728.
  • 10Trapnell C,Roberts A,Goff L,et al.Differential gene and transcript expression analysis of RNA-Seq experiments with To-pHat and Cufflinks[J].Nature Protocols,2012,7(3):562-578.

二级参考文献43

  • 1Pan Qun, Shai Ofer, Lee W, et al. Blencowe BJ. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing [J]. Nature Genetices, 2008, 40( 12) : 1413 -1415.
  • 2Skotheim RI, N ees M. Alternative splicing in cancer: noise, functional, or systematic? [J]. The International Journal of Biochemistry and Cell Biology, 2007, 39: 1432 - 1449.
  • 3Wang Zhong, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics [J]. Nature Reviews Genetics, 2009, 10 (I) : 57 - 63.
  • 4Turro E, Su Shu-Yi, Goncalves A, et al. Haplotype and isoform specific expression estimation using multi-mapping RNA-seq reads [J]. Genome biology, 2011, 12: R13.
  • 5Mortazavi A, Williams BA, McCue K, et al. Mapping and quantifying mammalian transcriptomes by RNA-Seq [J]. Nature Methods, 2008, 5 (7) : 621 - 628.
  • 6Jiang Hui, Wong Wing Hung. Statistical inferences for isoform expression in RNA-Seq [J]. Biolnformatics, 2009, 25 ( 8 ) : 1026 - 1032.
  • 7Kim H, Bi Yingtao, Pal S, et al. IsoformEx: isoform level gene expression estimation using weighted non-negative least squares from mRNA-Seq data [J]. BMC Biolnformatics, 2011, 12: 305.
  • 8Li Bo, Ruotti V, Stewart R. M, et al. RNA-Seq gene expression estimation with read mapping uncertainty [J]. Biolnformatics, 2010,26(4): 493 -500.
  • 9Li Bo, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome [J]. BMC Biolnformatics, 2011, 12: 323.
  • 10Katz Y, Wang Eric T, Airoldi EM, et al. Analysis and design of RN A sequencing experiments for identifying isoform regulation [J]. Nature Methods, 2010, 7: 1009 -1015.

共引文献4

同被引文献1

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部