期刊文献+

一种卷积神经网络和极限学习机相结合的人脸识别方法 被引量:19

Face Recognition Algorithm Based on Combination of Convolutional Neural Networks and Extreme Learning Machine
下载PDF
导出
摘要 卷积神经网络是一种较好的特征提取器,但却不是最佳的分类器,而极限学习机能够很好地进行分类,却不能学习复杂的特征,根据这两者的优点和缺点,将它们结合起来,提出一种新的人脸识别方法。卷积神经网络提取人脸特征,极限学习机根据这些特征进行识别。本文还提出固定卷积神经网络的部分卷积核以减少训练参数,从而提高识别精度的方法。在人脸库ORL和XM2VTS上进行测试的结果表明,本文的结合方法能有效提高人脸识别的识别率,而且固定部分卷积核的方式在训练样本少时具有较大优势。 Convolutional neural networks are good at learning features,but not always optimal for classification,while extreme learning machines are good at producing decision surfaces from well-behaved feature vector,but cannot learn complicated invariances.Based on the advantages and disadvantages of convolutional neural networks and extreme learning machine,we present a hybrid system where a convolutional neural network is trained to extract features and an extreme learning machine is trained from the features learned by the convolutional neural networks to recognize faces.We also propose prefix part of the filters in the convolutional layers to reduce parameters for improving the recognition accuracy.The experimental results obtained on the ORL and XM2 VTS databases show that the proposed method can effectively improve the performance of face recognition,and the method of prefixing part of the filters is better than the method of stochastic filters in small training data.
作者 余丹 吴小俊
出处 《数据采集与处理》 CSCD 北大核心 2016年第5期996-1003,共8页 Journal of Data Acquisition and Processing
基金 国家自然科学基金(61373055)资助项目
关键词 卷积神经网络 极限学习机 特征提取 人脸识别 convolutional neural networks extreme learning machine feature extraction face recognition
  • 相关文献

参考文献21

  • 1LeCun Y,Bottou L,Bengio Y,et al.Gradient-based learning applied to document recognition[J].Proceedings of the IEEE,1998,86(11):2278-2324.
  • 2Ossama A H,Mohamed A R,Jiang H,et al.Applying convolutional neural networks concepts to hybrid NN-HMM modelfor speech recognition[C]∥2012IEEE International Conference on Acoustics,Speech and Signal Processing.Kyoto,Japan:IEEE Computer Society Press,2012:4277-4280.
  • 3Turaga S C,Murray J F,Jain V,et al.Convolutional networks can learn to generate affinity graphs for image segmentation[J].Neural Computation,2010,22(2):511-538.
  • 4Krizhevsky A,Sutskever I,Hinton G E.Image net classification with deep convolutional neural networks[J].Advances inNeural Information Processing Systems,2012,25(2):1097-1105.
  • 5Ciresan D,Meier U,Schmidhuber J.Multi-column deep neural networks for image classification[C]∥2012IEEE Conferenceon Computer Vision and Pattern Recognition.[S.l.]:IEEE Computer Society Press,2012:3642-3649.
  • 6Arel I,Rose D C,Karnowski T P.Deep machine learning—A new frontier in artificial intelligence research[J].Computation-al Intelligence Magazine,2010,5(4):13-18.
  • 7Burges C J C.A tutorial on support vector machines for pattern recognition[J].Data Mining and Knowledge Discovery,1998,2(2):121-167.
  • 8宋晓宁,吴小俊,杨静宇,郑宇杰,杨习贝.支持向量机的新分类器算法研究(英文)[J].系统仿真学报,2009,21(12):3617-3621. 被引量:1
  • 9邹永祥,吴宗亮.一种广义不可分的支持向量机算法[J].数据采集与处理,2015,30(2):434-440. 被引量:6
  • 10奚吉,赵力,左加阔.基于改进多核学习的语音情感识别算法[J].数据采集与处理,2014,29(5):730-734. 被引量:7

二级参考文献32

  • 1王治平,赵力,邹采荣.基于基音参数规整及统计分布模型距离的语音情感识别[J].声学学报,2006,31(1):28-34. 被引量:26
  • 2S Abe. Analysis of Multi-class Support Vector Machines [C]// Proceedings of International Conference on Computational Intelligence for Modeling Control and Automation. New York, USA: IEEE Press, 2003: 385-396.
  • 3U KreBel. Pairwise classification and support vector machines [R]// Advances in Kernel Methods: Support Vector Learning. Cambridge, MA, USA: MIT Press, 1999.
  • 4C Burges. A Tutorial on support vector machine for pattern recognition [J]. Data Ming and Knowledge Discovery (S 1384-5810), 1998, 2(2): 955-974.
  • 5D Tsujinishi, S Abe. Fuzzy least squares support vector machines for multiclass problems [J]. Neural Networks (S0893-6080), 2003, 16(5): 785-792.
  • 6T Inoue, S Abe. Fuzzy support vector machines for pattern classification [C]// Proceedings of International Joint Conference on Neural Networks. New York, USA: IEEE Press, 2001: 1449-1454.
  • 7C FLin, S D Wang. Fuzzy Support Vector Machine [J]. IEEE Transaction on Neural Networks (S0893-6080), 2002, 13(2): 464-471.
  • 8H Yu, J Yang. A direct LDA algorithm for high-dimensional data-with application to face recognition [J]. Pattern Recognition (S0031-3203), 2001, 34( 10): 2067-2070.
  • 9W Zhao, R Chellappa, P J Phillips. Subspace Linear Discriminant Analysis for Face Recognition [R]//Tech Report CAR-TR-914. USA; Center for Automation Research, University of Maryland, 1999.
  • 10P N Belhumeur, J P Hespanha. Eigenfaces vs Fisherfaces: Recognition using class specific linear projection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence (SO 162-8828), 1997, 19(7): 711-720.

共引文献10

同被引文献150

引证文献19

二级引证文献310

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部