期刊文献+

Hilbert空间中可列个伪压缩映像的强收敛定理(英文)

Strong convergence theorems for a countable family of pseudocontractions in Hilbert spaces
下载PDF
导出
摘要 研究实Hilbert空间中寻求可列个一致Lipschitz伪压缩映像之公共不动点的三步混合粘性逼近法的收敛性.在缺乏它们的一致闭条件下,建立了该方法的强收敛定理.所得定理改进与推广了文献中早期与最近的有关结果. This paper is devoted to the convergence analysis of a three-step hybrid viscosity approximation method for finding a common fixed point of a countable family { Tn} n≥1 of uniformly Lipschitz pseudocontractions in a real Hilbert space. Without uniformly closed condition of { Tn/n≥1, we establish some strong convergence theorems for this method. The results presented in this paper improve and extend the corresponding results in the earlier and recent literature.
作者 孔兆蓉
出处 《上海师范大学学报(自然科学版)》 2016年第5期511-517,共7页 Journal of Shanghai Normal University(Natural Sciences)
基金 supported by the Project for Development Program of Young Teachers in Higher Education Institutions,Shanghai(ZZszf15015)
关键词 伪压缩映像 一致Lipschitz映像 强收敛 不动点 粘性逼近法 pseudocontraction uniformly lipschitz strong convergence fixed point viscosity approximation method
  • 相关文献

参考文献13

  • 1Ishikawa S. Fixed points by a new iteration method [ J ]. Proc Amer Math Soc, 1974,44:147 - 150.
  • 2Zeidler E. Nonlinear functional analysis and its applications, part II : Monotone Operators [ M ]. Berlin: Springer, 1985.
  • 3Chidume C E, Mutangadura S A. An example of the Mann iteration method for Lipschitz pseudocontractions [ J ]. Proc A- mer Math Soc,2001,129:2359 - 2365.
  • 4Chidume C E, Moore C. The solution by iteration of nonlinear equations in uniformly smooth Banach spaces [ J]. J Math Anal Appl, 1997,215 : 132 - 146.
  • 5Zegeye H, Shahzad N,Alghamdi M A. Convergence of Ishikawa's iteration method for pseudoeontraetive mappings [ J ]. Nonlinear Anal ,2011,74:7304 - 7311.
  • 6Cheng Q Q, Su Y F, Zhang J L. Convergence theorems of a three-step iteration method for a countable family of pseudo- contractive mappings [ J]. Fixed Point Theory Appl,2013 (1) :1 -14.
  • 7Mann W R. Mean value methods in iteration [ J ]. Proc Amer Math Soc, 1953,5:506 -510.
  • 8Chidume C E,Moore C. Fixed point iteration for pseudocontractive maps [J]. Proc Amer Math Soc, 1999, 127:1163 - 1170.
  • 9Zhou H. Convergence theorems of fixed points for Lipschitz pseudo-contractions in Hilbert spaces [ J ]. J Math Anal Appl, 2008,343:546 - 556.
  • 10Li S X, Ceng L C, Hu H Y, et al. Strong convergence of three-step iteration methods for a countable family of generalized strict pseudocontractions in Hilbert spaces [ J ]. Fixed Point Theory Appl,2014 (1) :1 -18.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部