期刊文献+

热解炭去除污水中Cr(Ⅵ)(英文) 被引量:5

Removal of Cr(Ⅵ) from aqueous solution by pyrolytic charcoals
下载PDF
导出
摘要 以胡桃壳在450℃裂解得到生物质炭BC450,以胡桃壳与20%沥青砂在450℃裂解得到BCTS20,与商业活性炭(CAC)进行对比研究去除污水中Cr(Ⅵ)的能力。与BC450相比,BCTS20具有更丰富的表面官能团。在适当条件下,BC450、BCTS20、CAC对Cr(Ⅵ)的去除率分别为80.47%、90.01%、95.69%。采用Langmuir、Freundlich、D-R模型研究吸附等温线,其中Langmuir模型最佳。BC450、BCTS20、CAC的最大Langmuir吸附容量分别为36.55、49.76、51.94 mg/g。这些炭材料对Cr(Ⅵ)的吸附可能归因于由离子交换、静电作用与螯合作用引起的化学过程。 Bio-chars produced by the pyrolysis of walnut shells at 450 ℃(BC450) and theco-pyrolysis of walnut shells and20 wt%tar sand(BCTS20) at the same temperature,were investigated as potential adsorbents for the removal of Cr(Ⅵ) ions from aqueous solutions using batch experiments.The BCTS20 has more abundant surface functional groups than BC450.The Cr(Ⅵ) removal percentages under optimal conditions were 80.47 and 95.69%for BC450 and BCTS20,respectively.Langmuir,Freundlich and D-R models were used to fit the adsorption isotherms and the Langmuir model described the adsorption isotherms best.The adsorption of Cr(Ⅵ) was by a chemical process dominated by ion-exchange,electrostatic attraction and chelation.The maximum Langmuir adsorption capacities were 36.55 and 49.76 mg per g of BC450 and BCTS20,respectively.The maximum Langmuir adsorption capacity of BCTS20 is comparable to that of some reported commercial activated carbons.
出处 《新型炭材料》 SCIE EI CAS CSCD 北大核心 2016年第5期501-509,共9页 New Carbon Materials
关键词 热解炭 胡桃壳 Cr(Ⅵ) Pyrolytic charcoal Walnut shell Hexavalent chromium
  • 相关文献

参考文献54

  • 1Liu W, Zhang J, Zhang, C, et al. Adsorptive removal of Cr (Ⅵ) by Fe-modified activated carbon prepared from trapa natans husk[ J]. Chemical Engineering Joumal, 2010, 162: 677-684.
  • 2Sikaily E A, Nemr A E, Khaled A, et al. Removal of toxic chromium from waste water using green alga ulva lactuca and its activated carbon [ J ]. Journal of Hazardous Materials, 2007, 148 : 216-228.
  • 3Li H, Li Z, Liu T, et al. A novel technology for biosorption and recovery of hexavalent chromium in wastewater by bio-func- tional magnetic beads [ J ]. Bioresource Technology, 2008, 99 : 6271-6279.
  • 4Arslan G, Edebali S, Pehlivan E. Physical and chemical factors affecting the adsorption of Cr (Ⅵ) via humic acids extracted from brown coals[ J]. Desalination, 2010 : 255, 117-123.
  • 5Kim S D, Park K S, Gu M B. Toxicity of hexavalent chromium to daphnia magna : influence of reduction reaction by ferrous iron [ Jl. Journal of Hazardous Materials, 2002, A93: 155-164.
  • 6Denmez G, Aksu Z. Removal of chromium (Ⅵ) from salina wastewaters by dunaliella species [ J ]. Process Biochemistry, 2002, 38: 751-762.
  • 7Gottipati R, Mishra S. Process optimization of adsorption of Cr (Ⅵ) on activated carbons prepared from plant precursors by a two-level full factorial design[ J ]. Chemical Engineering Jour- nal, 2010, 160: 99-107.
  • 8Baral A, Engelken R D. Chromium-based regulations and green- ing in metal finishing industries in the USA [ J ]. Environmental Science and Policy, 2002, 5: 121-133.
  • 9Terry P A. Characterization of Cr ion exchange with hydrotalcite [J]. Chemosphere, 2004, 57: 541-546.
  • 10Blmez T. The optimization of Cr (Ⅵ) reduction and removal by electrocoagulation using response surface methodology [ J ]. Journal of Hazardous Materials, 2009, 162: 1371-1378.

同被引文献19

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部