期刊文献+

基于DSM-CSI的非线性逆散射算法研究 被引量:1

DSM-CSI Based Nonlinear Inverse Scattering Method for Complex Objects Reconstruction
下载PDF
导出
摘要 由于反演问题中散射体所处区域和散射体个数信息的缺失,进而导致非线性逆散射方法的待重构空间维数高和运算代价高.基于线性逆散射方法在重构目标区域和目标个数信息的计算代价低,本文提出一种DSM(Direct Sampling Method)线性方法和CSI(Contrast Source Inversion)非线性方法相结合的非线性逆散射方法.该方法利用DSM方法的重构结果为CSI方法提供散射体所处区域和散射体个数的先验信息,进而降低待重构空间的维数以及非线性逆散射问题的计算量.实验计算结果证明了该方法的有效性. Due to the absence of information concerning the location and number of scattering objects in inverse scattering problem,it results in nonlinear inverse scattering method calling for high refactoring space dimension and high computational cost. Based on the lowcomputational burden with the linear inverse scattering methods in reconstructing the location and number of the targets,we propose a nonlinear inverse scattering method in this paper,which combined with DSMlinear and CSI nonlinear inverse scattering methods. The reconstruction results of DSMare used as the prior information to provide the location and the number of the targets for the CSI method,which reduce the dimension of refactoring space and the amount of computation. Experimental results showthe effectiveness of the proposed method.
出处 《电子学报》 EI CAS CSCD 北大核心 2016年第10期2501-2506,共6页 Acta Electronica Sinica
基金 国家自然科学基金(No.61062009 No.71461021 No.61261010) 江西省自然科学基金(No.2015BAB207001) 江西省科技支撑计划(No.20151BBE50090)
关键词 逆散射 直接抽样方法 对比源反演 inverse scattering problem direct sampling method(DSM) contrast source inversion method(CSI)
  • 相关文献

参考文献17

  • 1Tuchin V V, Tuchin V. Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis [M ]. Bellingham : SPIE Press ,2007.
  • 2Randazzo A, Estatico C. A regularisation scheme for elec- tromagnetic inverse problems:application to crack detection in civil structures [ J]. Nondestructive Testing and Evalua- tion ,2012,27(3 ) : 189 - 197.
  • 3Colton D, Kress R. Inverse Acoustic and Electromagnetic Scattering Theory [ M ]. Springer Science & Business Media, 2012.
  • 4Van Den Berg P M, Kleinman R E. A contrast source in- version method [ J 1. Inverse Problems, 1997,13 ( 6 ) : 1607.
  • 5Poll L,Oliveri G, Massa A. Microwave imaging within the first-order Born approximation by means of the contrast- field Bayesian compressive sensing[J]. IEEE Transactions on Antennas and Propagation, 2012,60 ( 6 ) : 2865 - 2879.
  • 6郑虎,李廉林,李芳.玻恩近似下的无相位检测电磁成像方法[J].电波科学学报,2008,23(4):669-673. 被引量:3
  • 7Catapano I, Randazzo A, Slob E, et al. GPR imaging via qualitative and quantitative approaches[ A]. Civil Engineer- ing Applications of Ground Penetrating Radar [ M/OL ]. Springer International Publishing,2015. 239 - 280.
  • 8Jeffrey I, Zakaria A, LoVetri J. Microwave imaging bymixed-order discontinuous Galerkin contrast source inver- sion[ A]. General Assembly and Scientific Symposium (URSI GASS) [ C]. USA:IEEE,2014,1 -4.
  • 9Oliveri G, Zhong Y, Chen X, et al. Multi.resolution sub- space-based optimization method for inverse scattering problems[ J]. JOSA A,2011,28(10) :2057 -2069.
  • 10赵延文,聂在平.多重网格技术与波恩迭代法相结合的反演新方法[J].电子学报,2003,31(2):171-174. 被引量:3

二级参考文献37

  • 1司伟建.MUSIC算法多值模糊问题研究[J].系统工程与电子技术,2004,26(7):960-962. 被引量:21
  • 2M Kaveh, A J Barabell. The statistical performance of the MUSIC and minimum-norm algorithms in resolving plane waves in noise[J]. IEEE Trans, 1986, ASSP-34(2) :331 - 341.
  • 3D R Farrier, D J Jeffries, R Mardani. Theoretical performance prediction of the MUSIC algorithm[J]. IEEE Proc F, 1988, RSP-135(3) :216 - 224.
  • 4Devancy A J. A filtered backpropagation algorithm for diffraction tomography[ J]. Ultrason Imaging, 1982, (4) :336 - 350.
  • 5Moghaddam M, et al. Nonlinear two-dimensional velocity profile inversion using time domain data[J]. IEEE Trans Geosci Remote Sensing,1992,30:147 - 156.
  • 6Ladas K T, et al. Inverse scattering using a variational principle[J]. J Electromagn Waves Applicat, 1996, (10) :3 - 17.
  • 7Ladas K T,et al. On the reconstruction of dielectric objects from scattered field data using the Heitler equation[J]. Electromag, 1996,16:17 -34.
  • 8Slaney M, et al. Limitations of imaging with first order diffraction tomography[ J]. IEEE Tram Microwave Theory Tech, 1984,32(8):860- 873.
  • 9Ghodgaonkar D K, et al. Estimation of complex pennittivities of threedimensional inhomogeneous biological bodies [ J ]. IEEE Trans Microwave Theory Tech, 1983,31 ( 6 ) : 442 - 446.
  • 10Caorsi S, et al. Redundant electromagnetic data for microwave imaging of three-dimensional dielectric objects[J]. IEEE Trans Antermas Propagat, 1994,42(5) :581 - 589.

共引文献38

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部