期刊文献+

有向图的拉普拉斯谱半径的几个上界

Several Upper Bounds for the Laplacian Spectral Radius of Digraphs
原文传递
导出
摘要 设G=(V(G),E(G))是一个简单有向图具有顶点集V(G)={v_1,v_2,…,v_n)和弧集E(G).用d_i^+表示顶点v_i的出度.设A(G)是有向图G的邻接矩阵和D(G)=diag(d_1^+,d_2^+,…,d_n^+)有向图G的顶点出度对角矩阵,则称L(G)=D(G)-A(G)为有向图G的拉普拉斯矩阵.L(G)的谱半径称作有向图G的拉普拉斯谱半径,用A(G)表示.在这篇文章中,给出了关于A(G)的一些上界,进而一些关于λ(G)涉及有向图G的出度和二次平均出度的上界也被得到.最后,我们举例对这些上界进行了比较. Let G = (V(G),E(G)) be a simple digraph with vertex set V(G) = {v1,v2…vn} and arc set E(G). Denote the outdegree of the vertex vi by d+. Let A(G) be the adjacency matrix of G and D(G) = diag(d1+,d2+,…,dn+) be the diagonal matrix with outdegrees of the vertices of G. Then we call L(G) = D(G) A(G) the Laplacian matrix of G. The spectral radius of L(G) is called the Laplacian spectral radius of G, denoted by λ(G). In this paper, we give some upper bounds on λ(G). Furthermore, some upper bounds on λ(G) involving outdegrees and average 2-outdegrees of the vertices of G are also obtained. Finally, we give an example to compare the bounds.
出处 《应用数学学报》 CSCD 北大核心 2016年第6期801-810,共10页 Acta Mathematicae Applicatae Sinica
基金 国家自然科学基金(No.11171273)资助项目
关键词 有向图 拉普拉斯谱半径 上界 digraph Laplacian spectral radius upper bounds
  • 相关文献

参考文献2

二级参考文献11

  • 1LiLuoluo Dept.ofScientific Com puting and Com puter Applications, Mathem atics and Com putation College, Zhong- shan Univ., Guangzhou 510275..A SIMPLIFIED BRAUER'S THEOREM ON MATRIX EIGENVALUES[J].Applied Mathematics(A Journal of Chinese Universities),1999,14(3):259-264. 被引量:8
  • 2Merris R.Laplacian matrices of graphs:a survey[J].Linear Algebra Appl,1998,(197/198):143-176.
  • 3Berman A,Plemmons R J.Nonnegative Matrix in the Mathematical Sciences[M].New York:Academic Press,1979.
  • 4Agaev R,Pavel Chebotarev.On the spectra of nonsymmetric Laplacian matrices[J].Linear Algebra Appl.,2005,(399):157-168.
  • 5Bauer F L,Deusch E,Stoer J.Abschatzungen fur eigenwerte positiver linear operatoren[J].Linear Algebra Appl.,1969,(2):275-301.
  • 6Mohar B.The Laplacian spectrum of graphs[A].Alavi Y et al.Graph Theory[C].Combinatories,and Application,1991,871-898.
  • 7Chai Wah-wu.Algebraic connectivity of directed graphs[J].Linear and Multilinear Algebra,2005,53(3):203-223.
  • 8Chai Wah-wu.On Rayleigh-Ritz ratios of a generalized Laplacian matrix of directed graphs[J].Linear Algebra Appl.,2005,(402):207-227.
  • 9Grone R,Merris R and Sunder V S.The Laplacian spectrum of a graph[J].SIAM J.Matrix Anal.Appl.,1990,(11):218-238.
  • 10Grone R and Merris R.The Laplacian spectrum of a graph Ⅱ[J].SIAM J.Discrete Math.,1994,(7):229-237.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部