期刊文献+

无爪图中点不相交的特殊四阶子图

Vertex-disjoint Copies of Specified Subgraphs of Order Four in Claw-free Graphs
原文传递
导出
摘要 如果图中不存在同构于K_(1.3)的诱导子图,则称这样的图为无爪图.令K_4^-表示从K_4中去掉一条边后得到的图.Faudree等人研究了无爪图中点不交三角形的个数与其最小度之间的关系,受此启发,我们研究了无爪图中点不交的K_4^-个数与其最小度以及阶数之间的关系.设G是阶数为n且最小度为δ≥5的无爪图,我们证明了G中包含至少((δ-4)/(7δ-8))n个点不交的K_4^-.作为推论,每—个阶数n≥28且δ>(n/7)等的无爪图至少包含(n-7)-2个点不交的K_4^-. A graph is called claw-free graph if it does not contain an induced subgraph isomorphic to K1,3. Let K4- denote the graph which obtained from K4 by removing exactly one edge. Cycles in claw-free graphs have been well studied by some researchers, in particular, the relation between the number of vertex-disjoint triangles and the minimum degree in claw-free graphs were presented by Faudree et al. Motivated by this, we consider the maximum number of vertex-disjoint K4- in claw-free graphs in terms of the graph order and minimum degree, which can been viewed as a generalization from cycles to specified subgraphs. Let G be a claw-free graph with order n and minimum degree 6 〉 5, by constructing method and the skill of packing subgraphs, we prove that G admits at least (δ-4/7δ-i)n vertexdisjoint copies of K4-. As a corollary, we show that every claw-free graph with order n 〉 28 and δ 〉 n/7 contains at least n/7 - 2 vertex-disjoint copies of K4.
出处 《应用数学学报》 CSCD 北大核心 2016年第6期890-896,共7页 Acta Mathematicae Applicatae Sinica
基金 国家自然科学基金(11161035 11561054)资助项目
关键词 度条件 点不交 无爪图 degree condition vertex-disjoint claw-free
  • 相关文献

参考文献2

二级参考文献13

  • 1Bondy, J. A., Murty, U. S. R.: Murty, Graph Theory, Second Edition, Springer, New York, 2008.
  • 2Fujita, S.: Disjoint stars and forbidden subgraphs. Hiroshima Math. J., 36, 397-403 (2006).
  • 3Fujita, S.: Vertex-disjoint copies of K1 ~ (K1 U K2) in claw-free graphs. Discrete Math., 308, 1628-1633 (2008).
  • 4Kawarabayashi, K.: F-factor and vertex-disjoint F in a graph. Ars Combin., 62, 183-187 (2002).
  • 5Wang, H.: Vertex-disjoint triangles in claw-Free graphs with minimum degree at least three. Combinatorica, 18, 441-447 (1998).
  • 6Zhang, X., Li, N., Wu, J. L., et al.: Vertex-disjoint triangles in Kl,t-free graphs with minimum degree at least t. Discrete Math., 310, 2499-2503 (2010).
  • 7Bondy J A, Murty U S R. Graph Theory. 2nd ed. New York: Springer, 2008.
  • 8Fjita S. Disjoint stars and forbidden subgraphs. Hiroshima Math J, 2006, 36:397-403.
  • 9Fujita S. Vertex-disjoint copies of K1 + (K1 [A K2) in claw-free graphs. Discrete Math, 2008, 308(6): 1628-1633.
  • 10Kawarabayashi K. F-factor and vertex-disjoint F in a graph. Ars Combin, 2002, 62: 183-187.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部