期刊文献+

一类具衰减位势的Schrdinger-Poisson方程变号基态解的存在性 被引量:1

Existence of Least Energy Sign-changing Solutions for Class of Schrdinger-Poisson Equation with Potential Vanishing at Infinity
原文传递
导出
摘要 本文研究一类具有衰减位势的Schrdinger-Poisson方程变号基态解的存在性,应用Nehari流形和变分方法,我们得到了该类方程存在一个变号基态解.进一步,如果该问题具有对称性时,我们证明了无穷多个非平凡解的存在性.在本文的结论中非线性项只要求是连续的. In this paper, we study a class of Schrodinger-Poisson equation with potential vanishing at infinity. Using Nehari manifold and variational methods, we find a least sign- changing solution to this problem. Morover, if the problem presents symmetry, we prove the existence of infinitely many nontrivial solutions. In our results the nonlinearity is only required to be continuous.
出处 《应用数学学报》 CSCD 北大核心 2016年第6期897-916,共20页 Acta Mathematicae Applicatae Sinica
基金 国家自然科学基金(No.11371212,11271386,11301564)资助项目
关键词 Schrodinger-Poisson方程 衰减位势 NEHARI流形 变号基态解 Sehrodinger-Poisson equation vanishing potential functions Nehari manifold least energy sign-changing solution
  • 相关文献

参考文献25

  • 1Benci V, Fortunato D. An eigenvalue problem for the Schrgdinger-Maxwell equations. Topol. Methods Nonl. Anal., 1998, 11:283 293.
  • 2Az2011ini A, Pomponio A. Ground state solutions for the nonlinear Schr6dinger-Maxwell equations. J. Math. Appl. Anal., 2008, 345:90 108.
  • 3D'Aprile T, Mugnai D. Solitary waves for nonlinear Klein-Gordon-Maxwell and Schr6dinger-Maxwell equations. Proc. Roy. Soc. Edinburgh Sect. A, 2004, 134:1-14.
  • 4D'Aprile T, Mugnai D. Non-existence results for the coupled Klein-Cordon-Maxwell equations. Adv. Nonl. Stud., 2004, 2:307-322.
  • 5Ambrosetti A, Ruiz D. Multiple bound stats for the SchrSdinger-Poisson equation. Comm. Contemp. Math., 2008, 10:1 14.
  • 6Cerami G, Vaira G. Positive solutions for some non-autonomous SchrSdinger-Poisson systems, d. Differential Equations, 2010, 248:521-543.
  • 7Coclite G M. A multiplicity result for the nonlinear SchrSdinger-Maxwell equations. Commun. Appl. Anal., 2003, 7(2-3): 417 423.
  • 8D'Avenia P. Non-radially symmetric solutions of nonlinear SchrSdinger equation coupled with Maxwell equations. Adv. Nonlinear Stud., 2002, 2:177-192.
  • 9D'Aprile T, Wei J. On bound states concentrating on spheres for the Maxwell-Schrodinger equation. SIAM J. Math. Anal., 2005, 37:321 342.
  • 10Figueiredo G M, Santos Junior J R. Existence of a least energy nodal solution for a Schr6dinger- Kirchhoff equation with potential vanishing at infinity. J. Math. Phys., 2015, 56:051506.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部