期刊文献+

多孔钼钛氧化物的自支撑制备及其结构转变

Self Supported Synthesis of Porous Molybdenum-titanium Oxide and the Resulting Structural Transformation
下载PDF
导出
摘要 通过MoO_3与TiO_2相互支撑的方法制备了一系列多孔钼钛氧化物,并在此基础上研究了该材料结构在随焙烧温度变化过程中的转变机制,通过XRD、BET、FESEM、TG/DTG等表征分析,当焙烧温度低于600℃时,MoO_3呈固体状态,通过MoO_3与TiO_2相互支撑可以制备出比表面积高达182 m2/g的介孔钼钛氧化物,可负载更多分散良好的MoO_3,其加氢脱硫性能显著优于常规浸渍法制备的催化材料;当焙烧温度高于600℃时,MoO_3呈熔融状态,"自支撑效应"消失,钼钛氧化物孔结构发生坍塌。 A series of porous molybdenum-titanium oxide (Mo-TiO2) were prepared by mutual support of MoO3 and TiO2, and the resulting structural transformation with calcination temperature was also studied in the present study. The as-prepared samples were characterized mainly by XRD, BET, FESEM, and TG/DSC. When the calcination temperature was lower than 600℃, MoO3 can maintain solid state. Mesoporous Mo-TiO2 with surface area of 182 m2/g was obtained via mutual support of MoO3 and TiO2. The oxide loaded by more well-dispersed MoO3 possessed significantly better hydrodesulfurization performance than that prepared by impregnation did. As MoO3 was fused at above 600℃, "self supported effect" was disappeared and the porous structure of Mo-TiO2 collapsed finally.
出处 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2016年第11期1198-1204,共7页 Journal of Inorganic Materials
基金 国家自然科学基金(21406118 91434109 91334202) 南京林业大学和南京工程学院人才启动基金(GXL2014036 YKJ201310) 江苏高校优势学科建设工程资助项目~~
关键词 钼钛氧化物 自支撑 比表面积 结构转变 加氢脱硫 molybdenum-titanium oxide self support surface area structural transformation hydrodesulfurization
  • 相关文献

参考文献3

二级参考文献48

  • 1Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor. Nature, 1972, 238(5358): 37-38.
  • 2Fox M A, Dulay M T. Heterogeneous photocatalysis. Chem. Rev., 1993, 93(1): 341-357.
  • 3Legrini O, Oliveros E, Braum A M. Photochemical process for water treatment. Chem. Rev., 1993, 93(2): 671-698.
  • 4Hoffmann M R, Martin S T, Choi Wonyong, et al. Environmental applications of semiconductor photocatalysis. Chem. Rev., 1995, 95(1): 69-96.
  • 5Ollis D F, Pelizzetti E, Serpone N. Destruction of water contaminants. Environ. Sci. Techol., 1991, 25(9): 1523-1529.
  • 6Mills A, Davies R H, Worsley D, et al. Water purification by semiconductor photocatalysis. Chem. Soc. Rev., 1993, 22(6): 417-425.
  • 7Somorjai G A, Hendwerk M, Turner J E. The catalyzed photodisso- ciation of water. Catal. Rev. Sci. and Eng., 1984, 26(34): 683-708.
  • 8Fujihira M, Satoh Y, Osa T. Heterogeneous photocatalytic oxidation of aromatic compounds on TiO2. Nature, 1981. 293(5829): 206-208.
  • 9Linsebigler A L, Lu G, Yates J T. Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem. Rev., 1995, 95(3): 735-738.
  • 10Tsuchiya H, Berger S, Macak J M, et al. A new route for the formation of self-organized anodic porous alumina in neutral electrolytes. Electrochemistry Communications, 2007, 9(4): 545-550.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部