期刊文献+

基于视觉显著性的局部感知锐度的模糊图像质量评价算法研究 被引量:1

No-reference Image Blur Assessment Method Based on Local Perceive and Visual Saliency
下载PDF
导出
摘要 提出了一种基于视觉显著性和局部感知锐度特征的模糊图像质量评价算法.首先利用有效的视觉显著性检测图像的显著区域,然后结合图像的局部方差和均值,构建有效图像的显著性权值;其次,分别计算图像的局部感知锐度谱特征和空间局部锐度特征,并然后结合视觉显著性权值形成新的锐度特征图,最后通过分析带权锐度特征图,计算图像质量的最终的评价值.在经典数据库TID2008,CSIQ,和LIVE上验证该算法的有效性,结果表明,与传统的基于局部感知锐度特征的评价算法相比,新算法有效地结合颜色信息和图像显著性,提高模糊图像的评价效果. This paper proposes a new image quality assessment method based on visual saliency and local perceptual sharpness. Firstly, the effective visual saliency image salient region is detected, and then the image local variance and mean construct effective image saliency weights are combined. Secondly, the image sharpness of local spectrum feature of local spatial features and sharpness are respectively computed, and then a new feature sharpness map is formed by combing the visual saliency weight of the image. Finally, the final evaluation index value of image quality is computed by the analysis of the sharpness map . Some experimental results show that the proposed method is effective than traditional evaluation method based on local perceptual sharpness in the classical database TID2008, CSIQ and LIVE because we effectively combine with color information and image saliency and improve the quality evaluation.
出处 《微电子学与计算机》 CSCD 北大核心 2016年第11期40-44,共5页 Microelectronics & Computer
基金 国家自然科学基金(61475027) 常州工学院自然科学基金(YN1208) 江苏省文化协同创新基金(XYN1408)
关键词 模糊图像质量评估 局部感知锐度特征 无参考 视觉显著性 blur image quality assessment local perceive sharpness no reference visual saliency
  • 相关文献

参考文献12

  • 1Ferzli R, Karam L. A no-reference objective image sharpness metric based on the notion of just noticeable blur (JNB)[J]. IEEE Transactions on Image Process- ing, 2009, 18(4) :717-728.
  • 2Narvekar N, Karam L. A no-reference image blur met- ric based on the cumulative probability of blur detec- tion (CPBD)[J]. IEEE Transactions on Image Pro- cessing, 2011, 20(9): 2678-2683.
  • 3苗莹,易三莉,贺建峰,邵党国.结合梯度信息的特征相似性图像质量评估[J].中国图象图形学报,2015,20(6):749-755. 被引量:19
  • 4Ninassi A,Le Meur O, Le Callet P, et al. Does where you gaze on an image affect your perception of quality? Applying visual attention to image quality metric[C]// 2007 IEEE International Conference on Image Process- ing. Texas,San Antonio, 2007(2) :169-172.
  • 5Wang Z, Bovik A, Sheikh H, et al. Image quality as- sessment: From error visibility to structural similarity [J]. IEEE Transactions on Image Processing, 2004,13 (4) : 600-612.
  • 6Moorthy A K, Bovik A C. Visual importance pooling for image quality assessment[J]. IEEE Journal of Se- lected Topics in Signal Processing, 2009, 3 (2): 193-201.
  • 7Vu C, Phan T, Chandler D. S3: a spectral and spatialmeasure of local perceived sharpness in natural images [J]. IEEE Transactions on Image Processing, 2012, 21(3) : 934-945.
  • 8Goferman Stas, Zelnik-Manor, Lihi, Tal Ayellet. Context-aware saliency detection [J]. IEEE Transac- tions on Pattern Analysis and Machine Intelligence, 2012,34(10) : 1915-1926.
  • 9Sheikh H R. LIVE image quality assessement database [EB/OL]. [2016-02-10]. http://live, ece. utexas, edu/ research/Quality.
  • 10Larson E, Chandler D. Most apparent distortion: full- reference image quality assessment and the role of strategy[J]. Journal of Electronic Imaging, 2010, 19 (1) : 1-21.

二级参考文献12

  • 1杨春玲,陈冠豪,谢胜利.基于梯度信息的图像质量评判方法的研究[J].电子学报,2007,35(7):1313-1317. 被引量:62
  • 2Wang Z, Bovik A C, Sheikh H R, et al. Image quality assess- ment: from error visibility to structural similarity [ J ]. IEEE Transactions on Image Processing, 2004, 13(4) : 1-14.
  • 3Chang H W, Yang H, Gan Y, et al. Sparse feature fidelity for perceptual image quality assessment [ J ] IEEE Transactions on Image Processing, 2013, 22(10): 4007-4018,.
  • 4Wang Z, Bovik A C. Auniversal image quality index [ J]. IEEE Signal Processing Letters, 2002, 9 ( 3 ) : 81-84.
  • 5Zhang L, Zhang L, MouX Q, et al. FSIM : a feature similarity in- dex for image quality assessment [ J ]. IEEE Transactions on Im- age Processing, 2011, 20(8): 2378-2386.
  • 6Guo L, Chen W L, Liao Y, et al. Multi-scale structural image quality assessment based on two-stage low-level features [ J ]. Computers and Electrical Engineering, 2014, 40 : 1101-1110.
  • 7Kovesi P. Image features from phase congruency [ J]. Videre: J Comp. Vis. Res. , 1999,1(3) :1-26.
  • 8Liu Z, Laganie"re R. Phase congruence measurement for image similarity assessment [ J]. SeienceDireet, 2007, 28 ( 1 ) : 166- 172.
  • 9Abdou I E, Dusaussoy N J. Survey of image quality measure- ments [ C ]// Proceedings of ACM Fall joint Computer Confer- ence. Washington DC : IEEE, 1986:71-78.
  • 10Ponomarenko N, Lukin V, Zelensky A, et al. TID2008-a data- base for evaluation of full reference visual quality assessment met- rics[ J]. Advances of Modem Radio Electronics, 2009, 10: 30- 45.

共引文献18

同被引文献4

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部