期刊文献+

面向运动目标检测的粒子滤波视觉注意力模型 被引量:9

Particle Filtering Based Visual Attention Model for Moving Target Detection
下载PDF
导出
摘要 视觉注意力是机器视觉领域的研究热点,对目标检测、跟踪等技术发展具有积极意义,本文面向运动目标检测问题,构建了一种基于粒子滤波的视觉注意力模型.首先依据贝叶斯估计理论,推导了基于注意力的粒子权重计算方法;然后将运动注意力和目标颜色注意力分别作为自底向上(Bottom-Up)和自顶向下(Top-Down)注意力的输入,通过重要性采样、粒子权值计算、重采样等形成粒子注意力显著图,并确定目标位置;测试结果显示本文方法能够获取比其它方法更好的目标注意力显著图,并具有准确的目标检测效果. Visual attention is one of the research hotspots in the field of machine vision,which is positive significance for development of target detection and target tracking. This paper presents a particle filter based visual attention model that is applied to detect moving target. Firstly,according to Bayes estimation theory,the method of particle weight calculation is established by visual bidirectional( Top-Down / Bottom-Up) fusion attention. Then motion attention and target color attention are adopted as input of the attention model,and moving target saliency is calculated through the importance sampling,particle weight calculation,resampling and particle saliency map processing. Lastly,the target position is determined by distribution of particle. Different video complex scene test results showthat this method is more effective and accurate than the traditional method for detection of moving target.
出处 《电子学报》 EI CAS CSCD 北大核心 2016年第9期2235-2241,共7页 Acta Electronica Sinica
基金 陕西省工业科技攻关项目(NO.2016GY-128) 国家自然科学基金(No.61001140) 西安市技术转移促进工程重大项目(No.CX12166)
关键词 注意力模型 运动目标检测 粒子滤波 融合 motion attention model moving target detection particle filtering fusion
  • 相关文献

参考文献1

二级参考文献12

  • 1Roda C, Thomas J. Attention aware systems: Theories, applications, and research agenda[J]. Computers in Human Behavior, 2006,22(4) :557 - 587.
  • 2Langton S,Watt R,Bruce V.Do the eyes have it? Cues to the direction of social attention[ J]. Trends in Cognitive Sciences, 2000,4(2) :50 - 58.
  • 3Stiefelhagen R. Tracking focus of attention in meetings [ A ]. Proceedings 4th IEEE International Conference on Mulfirnodal Interfaces [ C ]. Washington, DC: IEEE. Computer Society, 2002.273 - 280.
  • 4Volt M, Stiefelhagen R. Deducing the visual focus of attention from head pose estimation in dynamic multi-view meeting scenarios[A] .Proceedings 10th International Conference on Multimodal Interfaces[ C] .New York:ACM,2008.173 - 180.
  • 5Ba S, Odobez J. Multi-person visual focus of attention from head pose and meeting contextual cues[ J]. IEEE Trans on Patt Anal Mach Intelli,2010,32(3) :1 - 16.
  • 6Otsuka K, Sawada H, Yamato J. Automatic inference of crossmodal nonverbal interactions in multiparty conversations [ A ].Proceedings 9th International Conference on Multirnodal Interfaces[ C] .New York: ACM, 2007.255 - 262.
  • 7Smith K, Ba S, Gatica-Perez D, et al. Tracking the multi person wandering visual focus of attention[ A]. Proceedings 8th International Conference on Multimodal Interfaces[C]. New York: ACM, 2006. 265 - 272.
  • 8Zhang H, Toth L, Deng W, et al. Monitoring visual focus of attention via local discriminant projection [ A]. Proceedings 1st ACM International Conference on Multimedia Information Retrieval[ C ]. New York: ACM, 2008.18 - 23.
  • 9Olivier P, Monk A, Xu, G, Hoey J. Ambient Kitchen: designing situated services using a high fidelity prototyping environment [ A ]. Proceedings 2nd Intemational Conference on Pervasive Technologies Related to Assistive Environments [ C ]. New York: ACM, 2009.47.
  • 10Jones M, Viola P. Fast Multi-view Face Detection[ R]. Cambridge, Massachusetts: Mitsubishi Electric Research Laboratories, Inc., 2003.

共引文献1

同被引文献61

引证文献9

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部