摘要
视觉注意力是机器视觉领域的研究热点,对目标检测、跟踪等技术发展具有积极意义,本文面向运动目标检测问题,构建了一种基于粒子滤波的视觉注意力模型.首先依据贝叶斯估计理论,推导了基于注意力的粒子权重计算方法;然后将运动注意力和目标颜色注意力分别作为自底向上(Bottom-Up)和自顶向下(Top-Down)注意力的输入,通过重要性采样、粒子权值计算、重采样等形成粒子注意力显著图,并确定目标位置;测试结果显示本文方法能够获取比其它方法更好的目标注意力显著图,并具有准确的目标检测效果.
Visual attention is one of the research hotspots in the field of machine vision,which is positive significance for development of target detection and target tracking. This paper presents a particle filter based visual attention model that is applied to detect moving target. Firstly,according to Bayes estimation theory,the method of particle weight calculation is established by visual bidirectional( Top-Down / Bottom-Up) fusion attention. Then motion attention and target color attention are adopted as input of the attention model,and moving target saliency is calculated through the importance sampling,particle weight calculation,resampling and particle saliency map processing. Lastly,the target position is determined by distribution of particle. Different video complex scene test results showthat this method is more effective and accurate than the traditional method for detection of moving target.
出处
《电子学报》
EI
CAS
CSCD
北大核心
2016年第9期2235-2241,共7页
Acta Electronica Sinica
基金
陕西省工业科技攻关项目(NO.2016GY-128)
国家自然科学基金(No.61001140)
西安市技术转移促进工程重大项目(No.CX12166)
关键词
注意力模型
运动目标检测
粒子滤波
融合
motion attention model
moving target detection
particle filtering
fusion