摘要
针对传统协同过滤推荐数据稀疏会影响推荐质量,以及项目最近邻居集的计算忽略用户多兴趣及提高推荐的准确度问题,该文采用混合模型改进了相似性度量计算,综合Pearson相关系数与修正余弦相似性,提出了一种基于混合相似度的用户多兴趣推荐算法.实验表明:该推荐方法的相似度计算更高效,不仅提高推荐准确率,而且使用户有更好的推荐体验.
The traditional collaborative filtering recommendation's sparse data will affect the quality, and it fails to take into account the user multi-faced interests to determine the projects nearest neighbor set. Coupling with the traditional similarity measure method without considering user's behavior, leads to lower quality of the recommendation. In order to improve the recommendation accuracy, the hybrid model, improved similarity measure calculated by Pearson correlation linear combination of adjusted cosine correlation has been used, and then an user multi-faced in- terests recommendation algorithm of hybrid similarity computing is proposed in the paper. The experimental results show that the similarity calculation of recommend dation method is more efficient, improve the accuracy of recommendation, and make the better recommendation of user experience.
出处
《江西师范大学学报(自然科学版)》
CAS
北大核心
2016年第5期481-486,共6页
Journal of Jiangxi Normal University(Natural Science Edition)
基金
国家自然科学基金(61402118)
广东省科技计划项目(2012B091000173
2013B010401034
2013B090200017
2013B010401029)
广东省教育厅项目(ZYGX008)
广东省重点实验室开放基金(15zk0132)
广州市科技计划(2012J5100054
2013J4500028
2013J4100004
201508010067)资助项目
关键词
用户多兴趣
推荐算法
协同过滤
混合相似度
user multi-faced interests
recommendation algorithm
collaborative filtering
hybrid similarity computing