期刊文献+

费马型微分及差分方程亚纯解的极点性质

The Poles of Meromorphic Solutions of Fermat Type Differential-Difference Equations
下载PDF
导出
摘要 研究了费马型函数方程f(z)~n+g(z)~m=1的亚纯解,对该方程涉及微分和差分的一些情况,讨论了解的极点分布性质,得到了极点收敛指数的下界估计. Meromorphic solutions of Fermat type differential-difference equations are studied. The distribution of poles of solutions is investigated, and the lower bound is obtained for the exponent of convergence of the poles.
出处 《江西师范大学学报(自然科学版)》 CAS 北大核心 2016年第5期497-499,519,共4页 Journal of Jiangxi Normal University(Natural Science Edition)
基金 国家自然科学基金(11001057 11571049)资助项目
关键词 亚纯函数 极点 差分 费马型函数方程 meromorphic functions pole difference Fermat type equation
  • 相关文献

参考文献14

  • 1Hayman W K. Meromorphic function [ M]. Oxford: Clar-endon Press, 1964.
  • 2Laine I. Nevanlinna theory and complex differential equa-tions [M]. Berlin: Walter de Gruyter,1993.
  • 3Gross F. On the equation f -?gn [ J]. Bull Amer MathSoc,1966,72(6) ;86-88.
  • 4Montel P. Le^cons sur les families normales de fonctionsanalytiques et leurs applications [M]. Paris:Gauthier-Vil-lars,1927.
  • 5Gross F. On the equation f + = /in [ J ]. Amer MathMonthly,1966,73(10) : 1093-1096.
  • 6Yang Chungchun,Li Ping. On the transcendental solutionsof a certain type of nonlinear differential equations [ J ] .Arch Math,2004,82(5) :442-448.
  • 7Yang Chungchun. A generalization of a theorem of P. Mon-tel on entire functions [ J]. Proc Amer Math Soc, 1970,26(2):332-334.
  • 8Halburd R G,Korhonen R J. Difference analogue of thelemma on the logarithmic derivative with applications todifference equations [ J]. J Math Anal Appl, 2006, 314(2) :477487.
  • 9Halburd R G,Korhonen R J. Finite-order meromorphic so-lutions and discrete painleve equations [ J]. Proc LondonMath Soc,2007,94(2) :443-474.
  • 10Chiang Yiman,Feng Shaoji. On the Nevanlinna character-istic of /(z + g) and difference equations in the complexplane [J]. Ramanujan J,2008,361 (7) :3767-3791.

二级参考文献42

  • 1SHON Kwang Ho.Estimates for the zeros of differences of meromorphic functions[J].Science China Mathematics,2009,52(11):2447-2458. 被引量:18
  • 2Cherry W,Ye Zhuan. Nevanlinna's theory of value distri- bution, monographs in math [ M ]. Berlin: Springer-Verlag,2001.
  • 3Hayman W K. Meromorphic functions [ M ]. Oxford: Clar- endon Press, 1964.
  • 4Laine I. Nevanlinna theory and complex differential equa- tions [ M ]. Berlin : Walterde Gruyter, 1993.
  • 5Yang Chungchun, Yi Hongxun. Uniqueness theory of mero- morphic functions [ M]. 2rid ed. Beijing: Science Press, 2006.
  • 6Yang Le. Value distribution theory [ M ]. Berlin : Springer- Verlag & Science Press, 1993.
  • 7Gackstatter F, Laine I. Zur theorie der gewohnlichen differ- entialgleichungen im komplexen [ J ]. Ann Polon Math, 1980,38( 1 ) :259-287.
  • 8He Yuzhan, Laine I. The Hayman-Miles theorem and the differential equation (y') n = R ( z, y ) [ J ]. Analysis, 1990,10(4) :387-396.
  • 9Ishizaki K. On a conjecture of Gackstatter and Laine for some differential equations [ J ]. Proc Japan Acad, 1991, 67 : 270-273.
  • 10Ozawa M. On a conjecture of Gackstatter and Laine [ J]. Kodai Math J, 1983,6 ( 1 ) :80-87.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部