期刊文献+

基于AR(1)模型的纯保费的Monte Carlo模拟研究

Simulation of Pure Premium of Carlo Monte Based on AR(1) Mode
下载PDF
导出
摘要 把随机利率,转化成年利率,然后用AR(1)模型进行拟合,并利用SPSS软件对拟合做出检验。经检验拟合效果比较好,模型可用。以当前热销的前海人寿保险有限公司的万能保险为实证分析,用MonteCarlo模拟的方法,借助MATLAB软件求出了趸缴纯保费,并预测了在3σ原则下的纯保费区间。 In this paper, it changes random interest rate into annual interest rate. Then it uses the AR (1) model to fit the rate.And it tests the fitting by using the SPSS Software model . It calculates the net single premium by using matlab software and it predicts the pure premium interval of the principle of "three ", taking for example universal life insurance ,hotly sold by sea life insurance company, by using the method of Monte Carlo simulation.
作者 关清元 洪梦莹 GUAN Qingyuan HONG Mengyin(School of Mathematics and Computer Science ,Wuyi University ,Wuyishan, Fujian 35430)
出处 《武夷学院学报》 2016年第9期73-76,共4页 Journal of Wuyi University
基金 武夷学院科技类项目(XD201405) 国家级大学生创新训练项目(201410397002)
关键词 年平均加权利率 AR(1)模型 SPSS软件 MONTECARLO模拟 3滓原则 average weighted interest rate AR (1) model SPSS soft ware MonteCarlo simulation three σ principle
  • 相关文献

参考文献10

  • 1Milevsky M A.The presnt value of a stochastic perpetuity andthe gamma distribution [J]. Insurance: Mathematics and Eco-nomics,1997(20):243-250.
  • 2Milevsky M A .Martingales scale functions and stochastic lifeannuities a not [J]. Insurance: Mathematics and Economics,1999(24):149-154.
  • 3Kaas R,Dhaene J,Goovaerts M J.Upper and lower bounds forsums of variables [J] .Insurance:Mathematics and Economics,2007(27):151-168.
  • 4De A, Goovaerts M J,Dhaene J,et al.Bounds for present valuefuncions with stochastic interest rates and stochastic volatility[J].Insurance:Mathernatics and Econornics,2002(31):87-110.
  • 5Perry D, Stadje W?Function space intenration for annuities[J].Insurance:Mathematics and Economics,2001(29):73-82.
  • 6Perry D,Stadje W,Yosef R.Annuities with controlled randominterest[J].Insurance: Mathematics and Economics,2003(32):245-253.
  • 7蒋庆荣.随机利率下的终身寿险[J].杭州大学学报(自然科学版),1997,24(2):95-99. 被引量:9
  • 8郎艳怀,冯恩民.随机利率下综合人寿保险模型[J].大连理工大学学报,2001,41(5):511-513. 被引量:12
  • 9王丽燕,柳扬.随机利率下的准备金与寿险风险分析[J].大连大学学报,2003,24(4):17-20. 被引量:10
  • 10东明,郭亚军,杨怀东.社会养老保险中隐性债务的双随机模型[J].系统工程学报,2005,20(6):570-577. 被引量:1

二级参考文献16

  • 1何文炯,蒋庆荣.随机利率下的增额寿险[J].高校应用数学学报(A辑),1998,13(2):145-152. 被引量:36
  • 2KELLISON S G 尚汉冀.利息理论[M].上海:上海科学出版社,1995..
  • 3[4]BEARD R E. Risk Theory,the stochastic basis of insurance[M].Chapman and Hall,1987.
  • 4尚汉冀,利息理论,1995年
  • 5Frees E W.Stochastic life contingencies with solvency considerations (with discussions)[J].Transactions of the Society of Actuaries,1990,42:911-948.
  • 6Parker G.Limiting distribution of the present value of a portfolio[J].ASTIN Bulletin 24,1994,(1):47-60.
  • 7Parker G.Stochastic analysis of the interaction between investment and insurance risks[ J].Scandinavian Actuarial Journal,1997,1(2):55-84.
  • 8Marceau E,Gaillardetz P.On life insurance reserves in a stochastic mortality and interest rates environment[J].Insurance:Mathematics and Economics,1999,25:261-280.
  • 9BowersN L,Gerber H U,Hickman J C,et al.Actuarial Mathematics[M].Illinois:The Society of Actuaries,1997.
  • 10Kellison SG.The Theory of Interest[M].Homewood:Richard D Irwin Inc,1991.

共引文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部