期刊文献+

基于FPU的高速卡尔曼滤波器公式推导法硬件设计

High-Speed Hardware Design of Kalman Filter Based on FPU with Formula Derivation Method
下载PDF
导出
摘要 基于卡尔曼滤波器的传统硬件实现方式,根据滤波模型和矩阵运算,将滤波公式进行推导和化简,然后利用"自底向上"的设计思路,设计滤波公式需要的底层FPU(float point unit),从而实现整个卡尔曼滤波系统。以这种方法设计的卡尔曼滤波器,不仅摆脱了传统实现方式对于平台的依赖性,增加了系统的可移植性和应用范围,并且滤波速度比传统矩阵运算法有明显提升。对于匀加速滤波模型,给出公式推导法和矩阵运算法的详细数据对比,采用该方法设计的卡尔曼滤波器,滤波精度保持原来的水平,滤波速度提升为传统矩阵运算法的2.1倍。 Based on the traditional hardware implementations of Kalman filter, the authors derive and simplify the filtering formulas according to the filtering model and matrix operations, and then design underlying FPU (float point unit) needed by the filtering formulas according to the "bottom-up" design thinking, to implement the complete Kalman filter system. The Kalman filter designed by this method not only gets rid of dependence on third-party platforms and increase the portability and application areas of filtering system, but the filtering speed improves significantly than traditional matrix operation method. For a constant acceleration filtering model, this paper provides detailed data comparison between formula derivation method and traditional matrix operation method, the Kalman filter designed by this method maintains the accuracy of the previous level and achieves the computing speed 2.1 times, compared with the traditional matrix operation method.
作者 刘超 严伟 LIU Chao YAN Wei(School of Software and Microelectronics, Peking University, Beijing, 100871)
出处 《北京大学学报(自然科学版)》 EI CAS CSCD 北大核心 2016年第5期803-808,共6页 Acta Scientiarum Naturalium Universitatis Pekinensis
基金 江苏省产学研联合创新资金--前瞻性联合研究项目(BY2013018)资助
关键词 卡尔曼滤波器 目标跟踪 IEEE754 浮点数运算 实时性 Kalman filter target tracking IEEE754 floating-point operation real-time
  • 相关文献

参考文献9

  • 1Kalman R E. A new approach to linear filtering and prediction problems. Transaction of the ASME-- Journal of Basic Engineering, 1960, 82:35-45.
  • 2Fonseca J V, Oliveira R C L, Abreu J A P, et al. Kalman filter embedded in FPGA to improve tracking performance in ballistic rockets // 2013 UKSim 15th International Conference on Computer Modelling and Simulation. Cambridge, 2013:606-610.
  • 3Wu Panlong, Zhang Lianzheng, Zhang Xinyu. The design of DSP/FPGA based maneuvering target tracking system. Wseas Transactions on Circuits and Systems, 2014, 13:75-84.
  • 4赵大建,赵伟,张兆亮,宋国安,刘建业.基于FPGA的Kalman滤波器实现研究[J].现代电子技术,2012,35(6):67-70. 被引量:2
  • 5ANSI/IEEE Std 754-1985, IEEE Standard for Binary Floating-Point Arithmetic[S]. Piscataway, NJ: IEEE Standards Board, 1985.
  • 6Welch G, Bishop G. An Introduction to the Kalman filter. University of North Carolina at Chapel Hill, 1995(7): 127-132.
  • 7Auger F, Hilairet M, Guerrero J M, et al. Industrial applications of the Kalman filter: a review. IEEE Transactions on Industrial Electronics, 2013, 60(12): 5458-5471.
  • 8Chui C K, Chert G. Kalman filtering with real-time applications. 4th ed. Berlin: Springer, 2008:45-48.
  • 9王凯,孙锋.异步FIFO的设计分析[J].电子器件,2014,37(3):431-434. 被引量:5

二级参考文献12

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部