期刊文献+

制备工艺参数对轻烧MgO反应活性的影响 被引量:1

Influences of Preparation Parameters on the Reaction Activity of Light Burned MgO
下载PDF
导出
摘要 轻烧MgO的制备工艺决定其作为混凝土膨胀剂的性能。该文研究了菱镁石的矿物组成和热分解特性,并研究了煅烧温度、保温时间、升温速率以及冷却方式等煅烧工艺参数对轻烧MgO的反应活性以及水化热的影响规律。结果表明:选用适宜粒度的菱镁石可以制备高活性MgO粉体,煅烧温度超过700℃后,随着煅烧温度的升高,MgO化学活性显著降低,当煅烧温度高于700℃时,随着煅烧时间的延长,虽然烧失量逐渐增大,菱镁石分解更加完全,但MgO化学活性随之降低,在相同煅烧温度和保温时间下,升温速率越快MgO活性越高,快速冷却方式制得MgO反应活性较高。 Light - burned magnesia (MgO) is generally used as concrete expansion agent, and the properties of MgO expansion a- gent are depended on the preparation processes of MgO. In this paper, the mineral composition and thermal decomposition charac- teristics of magnesite are characterized, and the effects of calcination temperature, holding time, heating rate and cooling calcining process parameters on the reactivity of light - burned MgO are studied. The results indicate that the reactivity of MgO decreased sig- nificantly with the increase of calcinations temperature when the calcinations temperature is higher than 700℃. Although the ignition loss increases gradually as the extension of holding time, the reactivity of MgO decreased. Rapid heating and cooling are conducive to improving the reactivity of MgO.
出处 《广东水利水电》 2016年第3期41-45,共5页 Guangdong Water Resources and Hydropower
关键词 轻烧Mg O 煅烧温度 保温时间 升温速率 冷却方式 反应活性 light - burned MgO calcinations temperature holding time heating rate cooling rate reactivity
  • 相关文献

参考文献4

  • 1邸素梅.我国菱镁矿资源及市场[J].非金属矿,2001,24(1):5-6. 被引量:62
  • 2郭如新.矿物型镁质阻燃剂近期发展动向[J].塑料助剂,2011(4):14-18. 被引量:5
  • 3V. . Fajnor,H. Gerthofferov,L'. Kuchta,et al. ,High -temperature phases of montmorillonite synthetized from the ox-ides Si O2- Al2O3- Mg O - Ca O,J. Therm. Anal. Calorim.1982,24( 1) : 51 - 57.
  • 4M. A. L. Braulio,P. O. C. Brant,L. R. M. Bittencourt,et al. ,Microsilica or Mg O grain size: Which one mostly af-fects the in situ spinel refractory castable expansion? Ceram.Int. 2009,35( 8) : 3 327 - 3 334.

二级参考文献18

  • 1赵增贵,王立卓,徐公民.我国镁工业面临的形势和对策[J].矿产保护与利用,1997,17(1):35-38. 被引量:8
  • 2Ito R. Natural Magnesium Hydroxide Based Flame Retarding Material and its Application [J]. Plastics, 2003,54 (9):57-63.
  • 3Miyachi Y. Development of New Natural Magnesium Flame Retardants[J]. Materiaru Raifu Gakkaishi, 2004,16(3):82- 85.
  • 4Hornsby P R. Maximizing the Fire Retarding Performance of Hydrated Mineral Fillers[C]. Proceedings of the Conference on Recent Advances in Flame Retardancy of Polymeric Materials, Business Communications Co.. Inc. 2007.18:94-103.
  • 5Stamatakis M G. Oeeurrence and Genesis of Huntite-hydromagnesite assemblages, Kozani. Greece-Important New White Fillers and Extenders [J]. Transactions of the Institution of Mining and Metallurgy Section B, 1995. 104 (Sep/Dec): 179-186.
  • 6Wilson I. Brucite Bonanza [J]. Industrial Minerals, 2007, (481):74-79.
  • 7O'Driscoll M. Magnesia Minors: Brucite, Huntite and Hydromagnesite[J]. Industrial Minerals, 2005,(453):41-47.
  • 8Anon. Far East Brucite[J], Industrial Minerals, 2005,(459): 54-56.
  • 9Shand M A. World Wide Occurrence of Magnesite and Brucite in The Chemistry and Technology of Magnesia[M]. USA: John Wiley & Sons, 2006:12-16.
  • 10Kramer D A. Magnesium Minerals and Compounds in Industrial Minerals & Rocks: Commodities, Markets, and Uses[M]. Linleton: Society for Mining, Metallurgy and Exploration, 2006:615-629.

共引文献64

同被引文献6

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部