摘要
集约式的现代化农业生产在保障粮食产量与安全方面做出了巨大的贡献,但这种以高投入、单品种为特征的生产方式使农田生态系统中作物能利用的生态位幅度缩小,区域生态承载能力显著下降。相对单作,间套作模式在实现高产的同时,还能提高农田生态系统的时间、空间和养分资源利用效率,减少农业系统的物资投入,减少环境的污染。间套作体系中,不同物种在形态结构、生理特征、空间分布和养分需求等方面存在差异,因此降低生态位的重叠度并减少竞争,系统能更有效地利用空间、光、水、养分等环境因子来获得产量优势。作物间生态位的互补性是间作套种的理论基础,但是目前在农业间套作研究中,有关生态位对农作物间套作的增产机制方面的探讨仍不多见。有鉴于此,本文综述了目前国内外有关国内外间作套作的研究,在此基础上探讨农作物间套作中作物生态位研究的相关问题及研究进展,基于生态位角度从营养、空间、时间3个方面,分析间套作增产机制。最后提出未来间套作农田生态系统在生态位、种间关系以及资源利用率方面需要加强研究的内容,以期为实现精耕细作农业的可持续发展提供参考。
Intensive farming has significantly contributed to the improvement on the global food production and security. However, ecologically, the uniformity in genetics and plant variety as well as the high demand on resources, which is characteristic to the practice, invariably restricts utilization of the crops and rejuvenation capacity of the nature. Compared with monoculture, appropriate intercropping can generally improve crop yield with reduced inputs. And, at the same time, make full use of the available resources, time, space, and nutrients on farmlands. Furthermore, intercropping can also minimize environmental pollution by eliminating or reducing the use of agrochemicals. Since all plants have their natural niches, the morphological and physiological differences among them oftentimes permit capitalization of a wide range of advantages through mutual compensations. Unfortunately, the information in regard to the eco-niche on intercropping is rather scant. Therefore, this article reviews the relevent literature published domestically and internationally with an attempt to bring attention to agriculture scientists for in increased effort in this field of study. Recent advances on yield-improvement by intercropping from the aspects of spatial, nutritional, and temporal niches are discussed. Several proposed directions for future research, such as ecological niche, interspecies relationship, and resource utilization, are included.
出处
《福建农业学报》
CAS
北大核心
2016年第9期1005-1010,共6页
Fujian Journal of Agricultural Sciences
基金
国家自然科学基金(31300371)
关键词
生态位
间套作
增产
资源利用
niche
intercropping
yield advantage
resource utilization