期刊文献+

非线性黏弹性波动方程解的爆破

Blow up of Solution for Nonlinear Viscoelastic Wave Equation
下载PDF
导出
摘要 研究了带有非线性阻尼和源项的黏弹性波动方程解的存在性及爆破性问题。特别地,该方程主部系数μ(t)是关于时间t的一个函数。在假设条件下,获得了该问题局部解的存在性。在局部解存在前提下,利用势井理论和能量方法证明了当初始能量有上界时,解在有限时间内爆破,并给出了关于解的爆破时间估计。 The existence and blow-up of the solution for a viscoelastic wave equation with nonlinear damping and source terms were considered. Especially,the coefficient of the principal part of the equation μ( t) was time t dependent function. Under some assumptions,the existence of local solution was proved. When the initial energy has an upper bound and the local solution exist,the solution blows up in finite time by using the potential well theory and energy method. In addition,an estimate about the blow-up time of the solution was obtained.
作者 寇伟
出处 《河南科技大学学报(自然科学版)》 CAS 北大核心 2017年第1期88-92,9,共5页 Journal of Henan University of Science And Technology:Natural Science
基金 国家自然科学基金项目(11171195)
关键词 解的爆破 非线性黏弹性波动方程 变系数主部 势井理论 blow-up of solution nonlinear viscoelastic wave equation principal part of variation coefficient potential well theory
  • 相关文献

参考文献10

  • 1MESSAOUDI S A.A note on blow up of solutions of a quasilinear heat equation with vanishing inital enery[J].Journal of mathematical analysis&applications,2002,273(1):243-247.
  • 2LIU W,WANG M.Blow-up of the solutions for a p-Laplacian equtions with positive inital-enery[J].Acta applicandae mathematicae,2008,103(2):141-146.
  • 3TODOROVA G,BITILLARO E.Blow-up for nonlinear dissipative wave equation in RN[J].Journal of mathematical analysis&applications,2005,303(1):242-257.
  • 4赵丽英,任俊艳,王周峰.一类非线性波动方程的初边值问题[J].河南科技大学学报(自然科学版),2009,30(3):84-87. 被引量:2
  • 5赵丽英,和凌云.一类非线性波动方程解的爆破[J].河南科技大学学报(自然科学版),2011,32(1):75-78. 被引量:1
  • 6MESSAOUDI S A.Blow up and global existence in a nonlinear viscoelastic wave equations[J].Mathematische nachrichten,2003,260(1):58-66.
  • 7MESSOUDI S A.Blow up of positive-initial-energy solutions of a nonlinear viscoelastic hyperbolic equation[J].Journal of mathematical analysis&applications,2006,320(2):902-915.
  • 8LI F,GAO Q.Blow-up of the solutions for a nonlinear Petrovsky type equation with memory[J].Applied mathematics&computation,2016,274(1):383-392.
  • 9HA T G.Blow-up for semilinear wave equation with boundary damping and source terms[J].Journal of mathematical analysis&applications,2012,390(1):328-334.
  • 10HA T G.Blow-up for wave equation with weak boundary damping and source terms[J].Applied mathematics letters,2015,49:166-172.

二级参考文献14

  • 1Yang Zhijian.Global Existence,Asymtotic Behavior and Blowup of Solutions for a Class of Nonlinear Wave Equations With Dissipative Term[J].JDifferential Equations,2003,187:136-155.
  • 2Solange Kouemou Patchev.On Global Solutions and Asymptotic Behaviour for the Generalized Damped Extensible Beam Equation[J].JDifferential Equations,1997,135:299-314.
  • 3Ang D D,Dinh A P N.On the Strongely Damped Wave Equation utt-△u-△ut+f(u)=0[J].SIAM J Math Anal 1998,19:1409-1418.
  • 4Nakao M,Ono K.Existence of Global Solutions to the Cauchy Problem for the Semilinear Dissipative Wave Equation[J].Math Z,1993,214:325-342.
  • 5Liu Yue.Decay and Scattering of Small Solutions of a Generalized Boussinesq Equation[J].J Funct Anal,1997,147:51-68.
  • 6Adams R A.Sobolev Spaces[M].New York:Academic Press,1975.
  • 7Komornik V.Exact Controllability and Stabilization the Multiplier Method[M].New York:John Wiley,1986.
  • 8Yang Z J. Global Existence, Asymtotic Behavior and Blowup of Solutions for a Class of Nonlinear Wave Equations with Dissipative Term[ J]. J Differential Equations ,2003,187 : 136 - 155.
  • 9Solange K P. On Global Solutions and Asymptotic Behaviour for the Generalized Damped Extensible Beam Equation[ J]. J Differential Equation, 1997,135:299 - 314.
  • 10Chen G W,Yang Z J. Existence and Non-exitence of Globle Solutions for a Class of Nonlinear Wave Equations [ J ]. Math Meth Appl Sci,2000,23:615 - 631.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部