摘要
分析了粘结压电材料的梯度压电压磁层合中的界面裂纹,在非渗透性边界条件情况下,假定材料物性参数呈指数变化,运用Fourier变换将问题转化为奇异积分方程.然后利用Guass-Chebyshev积分公式对奇异积分方程进行数值求解,得到了裂纹尖端的应力、电位移和磁通量强度因子.最后考察了裂纹长度和梯度参数等因素对强度因子的影响.
In this paper,the interfacial crack of functionally graded piezoelectric and piezomagnetic layers bonded to the piezoelectric materials is analyzed.In the impermeable boundary conditions,based on the assumption of the material property parameters to the exponential,the question is turned into the singular integral equations using Fourier transform.Then,the numerical results of the singular integral equations are obtained through the Guass-Chebyshev integral formula.As a result, the stress intensity factors, electric displacement factors and piezomagnetic intensity factors at crack tips are obtained.In the end,the effects of material graded parameter and the length of the crack on the intensity factors are explored.
出处
《西北师范大学学报(自然科学版)》
CAS
北大核心
2016年第6期38-41,50,共5页
Journal of Northwest Normal University(Natural Science)
基金
宁夏高等学校科学技术研究资助项目(njg201422218
ZD20142221)
宁夏自然科学基金资助项目(NZ16257
NZ16253
NZ16255)
关键词
功能梯度压电压磁材料
界面裂纹
奇异积分方程
应力强度因子
functionally graded piezoelectric/piezomagnetic materials
interfacial crack
singular integral equation
stress intensity factor