期刊文献+

基于联合子空间与多源适应学习的多标签视觉分类

Multi-label visual classification based on joint subspace and multi-source adaptation learning
下载PDF
导出
摘要 传统的视觉分类方法普遍忽视了多标签间的相关性和大量相关源数据的判别信息.为此,基于共享子空间和领域适应学习方法,针对多标签视觉分类问题,提出了一种新的联合子空间和多源适应学习的多标签视觉分类方法,简称为多源适应多标签学习(Multi-Source adaptation Multi-Label learning,MSML).MSML将综合考虑多标签相关性、灵活的特征相似性嵌入和多源模型的适应学习等目标,并将其融为一个统一的学习模型,其全局最优解只需通过一个广义特征分解问题的求解便可获得.在视频概念识别、自动图像标注等实际应用中进行比较分析,结果显示了本文方法的有效性和优越性. Traditional visual classification methods usually ignore the correlations among different tags, and the discriminative information existed in lots of related auxiliary source domains.In this paper on the basis of the advances of shared subspace and multi-source adaptation learning research, a novel joint shared subspace learning and multi-source adaptation multi-label (MSML)visual classification method is proposed.Specifically,MSML simultaneously considers the label correlation,flexible feature similarity embedding,and multi-source model adaptation,and integrates them into a unified learning model.The results show that the globally optimal solution of the proposed method can be obtained by performing generalized eigen-decomposition.We evaluate the proposed method on two real-world visual classification tasks such as video concept detection and automatic image annotation.The experimental results show that the proposed algorithm is effective and can obtain comparable or even superior to related works.
出处 《西北师范大学学报(自然科学版)》 CAS 北大核心 2016年第6期56-63,共8页 Journal of Northwest Normal University(Natural Science)
基金 教育部人文社科基金资助项目(13YJAZH084) 浙江省自然科学基金资助项目(LY14F020009) 宁波市自然科学基金资助项目(2014A610024)
关键词 共享子空间学习 多源适应学习 视觉分类 多标签学习 shared subspace learning multi-source adaptation learning visual classification multi-label learning
  • 相关文献

参考文献20

  • 1YANG Y, WU F, NIE F, et al. Web and personal image annotation by mining label correlation with relaxed visual graph embedding [ J ]. IEEE Transactions on Image Processing, 2012, 21 (3) : 1339.
  • 2HAN Y, WU F, ZHUANG Y, et al. Multi-label transfer learning with sparse representation [ J ]. IEEE Transactions on Circuits Systems for Video Technology, 2010, 20(8) : 1110.
  • 3DUAN L X, TSANG I W, XU D, etal, Domain transfer SVM for video concept detection. [EB/ OL ]. [ 2016-04-20 ]. http://vision, lbl. gov/ conferences/cvpr/papers/0506, pdf.
  • 4QI G J, HUA X S, RUI Y, et al. Correlative multi- label video annotation. [EB/OL]. [2016-04-20]. http://131. 107.65.14/en-us/um/people/yongrui/ ps/acmmm07GJ, pdf.
  • 5ZHA Z J, MEI T, WANG J, et al. Graph-based semi-supervised learning with multipIe labels [J]. Journal of Visual Communication Image Representation, 2009, 20(2): 97.
  • 6JI S W, TANG L, YU S, et al. Extracting shared subspace for multi-label classification. [ EB/OL]. [ 2016-04-05 ]. http://leitang, net/papers/kdd692- ji. pdf.
  • 7NIE F, XU D, TSANG W H, et al. Flexible manifold embedding., a framework for semi- supervised and unsupervised dimension reduction[J]. IEEE Transactions on Image Processing, 2010, 19(7): 1921.
  • 8ZHU X. Semi-supervised learning literature survey [J]. Computer Science, 2008, 37(1) : 63.
  • 9PAN S J, YANG Q. A Survey on transfer learning [J]. IEEE Transactions on Knowledge & Data Engineering, 2010, 22(10) : 1345.
  • 10ANDO R K, ZHANG T. A framework for learning predictive structures from multiple tasks and unlabeled data [J]. Journal of Machine Learning Research, 2005, 6(3) : 1817.

二级参考文献24

  • 1赵立强,张晓华,高振波,张洪亮.基于BP神经网络的主分量分析人脸识别算法[J].计算机工程与应用,2007,43(36):226-229. 被引量:12
  • 2ABDI H, WILLIAMS L J. Principal component analysis [ J ]. Wiley Interdisciplinary Reviews : Computational Statistics, 2010, 2(4): 433-459.
  • 3LAUER F, SCHNORR C. Spectral clustering of linear subspaces for motion segmentation [C]// Proceedings of the 12 th International Conference on Computer Vision. Kyoto: IEEE, 2009: 678-685.
  • 4WRIGHT J, YANG A Y, GANESH A, et al. Robust face recognition via sparse representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2) .. 210-227.
  • 5LIU G, LIN Z, YU Y. Robust subspace segmentation by low-rank representation [ C ]// Proceedings of the 27th International Conference on Machine Learning. Haifa: Omnipress, 2010: 663- 670.
  • 6ELHAMIFAR E, VIDAL R. Sparse subspaee clustering[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Anchorage: IEEE, 2009: 279~3-2792.
  • 7ELHAMIFAR, VIDAL R. Sparse subspace clustering: Algorithm, theory, and applications[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(11): 2765-2781.
  • 8LIU G, LIN Z, YAN S. Robust recovery of subspace structures by low-rank representation[-J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1) .. 171-184.
  • 9FAVARO P, VIDAL R, RAVICHANDRAN A. A closed form solution to robust subspace estimation and elustering[C]//Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition. Colorado.. IEEE, 2011.. 1801-1807.
  • 10WANG Y X, XU H, LENG C. Provable subspace clustering: When LRR meets SSC[C]//Advances in Neural Information Processing Systems. Nevada.. MITPress, 2013: 64-72.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部