期刊文献+

环境中细微颗粒物对人支气管上皮细胞转分化的影响 被引量:6

PM2.5 from traffic-related ambient air and wood smoke induces epithelial-mesenchymal transition in human bronchial epithelial cells
原文传递
导出
摘要 目的 初步观察交通主干道旁大气细微颗粒物(TAPM2.5)和使用木材烹饪厨房内细微颗粒物(WSPM2.5)对人支气管上皮细胞(HBEC)上皮-间充质细胞转分化(EMT)的影响.方法 分别采集交通主干道旁和使用木材烹饪的厨房内大气中的细颗粒物,通过DMSO萃取获得TAPM2.5-DMSO和WSPM2.5-DMSO.用不同浓度TAPM2.5-DMSO和WSPM2.5-DMSO刺激HBEC 24 h后,应用细胞增殖-毒性检测试剂盒(CCK-8)检测细胞活力;通过细胞免疫荧光和蛋白免疫印迹法,检测TAPM2.5-DMSO(20 mg/L)、WSPM2.5-DMSO(10 mg/L)刺激HBEC 14 d后,上皮细胞标志物E-钙黏素蛋白(E-cadherin)、细胞角蛋白(Cytokeratin)和间充质细胞标志物α-平滑肌肌动蛋白(α-SMA)、波形蛋白和Ⅰ型胶原蛋白(COL-Ⅰ)的表达情况.结果 TAPM2.5-DMSO(浓度为1、2、10 mg/L)和WSPM2.5-DMSO(浓度为1、5、10 mg/L)对细胞活力产生影响,增强细胞的活力[分别为(118.4±13.7)%、(118.2±8.0)%、(123.0±19.6)%和(112.4±4.1)%、(120±5.4)%、(117.8±7.0)%,F值分别为71.4和49.09,均P<0.05],在TAPM2.5-DMSO(20 mg/L)和WSPM2.5-DMSO(15和20mg/L)刺激组细胞活力处于平衡状态[(100.7±12.1)%和(106.8±10.0)%、(93.8±7.9)%,均P>0.05].TAPM2.5-DMSO浓度达到100、200 mg/L,WSPM2.5-DMSO浓度达到30、40 mg/L后,对细胞活力逐渐呈现抑制作用[分别为(53.4±15.3)%、(9.4±1.7)%和(60.9±9.5)%、(46.2±3.6)%,均P<0.01].与空白对照组相比,TAPM2.5-DMSO和WSPM2.5-DMSO刺激组细胞形态发生改变,细胞免疫荧光提示上皮细胞标志物E-cadherin和Cytokeratin表达减少,间质细胞标志物α-SMA和波形蛋白表达上调;蛋白免疫印迹提示Cytokeratin表达水平在两组均明显下调[(0.063±0.109)和(0.039±0.313),P值分别为0.033和0.030],E-cadherin表达呈下调趋势,但差异无统计学意义[(0.862±0.096)和(0.817±0.212),P值分别为0.228和0.117];PM2.5刺激组COL-Ⅰ表达均上调[(2.549±1.037)和(3.658±1.207),P值分别为0.034和0.001],α-SMA仅在WSPM2.5-DMSO刺激组表达明显上调(8±5,P=0.049).结论 交通主干道旁大气PM2.5和木材烟雾PM2.5均可引起人支气管上皮细胞发生上皮-间充质细胞转分化改变,木材烟雾PM2.5的作用似乎更为显著. Objective To observe if arterial traffic ambient PM2.5 (TAPM2.5) and wood smoke PM2.5 (WSPM2.5) exposure can induce epithelial-mesenchymal transition (EMT) in human bronchial cells (HBEC).Methods PM2.5 was collected from an arterial traffic road and a typical southern kitchen,and then the collections were extracted by DMSO.The viability of HBEC was measured by Cell Counting Kit (CCK-8) after culture with PM2.5-DMSO extracts for 24 hours.The expressions of EMT markers,including E-cadherin,cytokeratin,α-smooth muscle actin (α-SMA),vimentin and collagen type Ⅰ (COL-Ⅰ) in HBEC were assayed by cell immunofluorescence and Western blot analysis after exposed to two different sources of PM2.5-DMSO extracts for 14 days.Results The cell viability of HBEC increased at low concentrations (1,2,10 μg/ml and 1,5,10 μg/ml,corresponding to [(118.4 ± 13.7)%,(118.2 ± 8.0)%,(123.0±19.6)% and (112.4±4.1)%,(120±5.4)%,(117.8±7.0)%,respectively,allP〈 0.05],and then declined at high levels [20,100,200 iμ g/ml and 15,20,30,40 μg/ml,corresponding to(100.7±12.1)%,(53.4±15.3)%,(9.4±1.7)% and (106.8±10.0)%,(93.8±7.9)%,(60.9± 9.5)%,(46.2 ± 3.6)%,respectively,P values were 0.923,0.000,0.000 and 0.231,0.278,0.000,0.000,respectively] in both TAPM2.5-DMSO and WSPM2.5-DMSO incubation.After exposure for 14 days,the cells lost their typical cobblestone-like shape which implied that EMT might occur.The same treatment caused decreased positive signals of E-cadherin and cytokeratin in a small proportion of the cells.The decreasedexpressions of cytokeratin were verified by Western blot (TAPM2.5 and WSPM2.5 were 0.063 ± 0.109 and0.039 ± 0.313,P values were 0.033 and 0.030,respectively),while α-SMA was only significantlyupregulated in the WSPM2.5-DMSO group (7.853 ± 4.784,P =0.049).The expressions of E-cadherindecreased in both groups but not statistically significant in Western blot (0.862 ±0.096 and 0.817 ±0.212,P values were 0.228 and 0.117,respectively).Another marker of EMT,COL-Ⅰ,markedly increased in both PM2.5 treatment groups (2.549 ± 1.037 and 3.658 ± 1.207,P values were 0.034 and 0.001).Conclusions Both PM2.5 from arterial traffic ambient air and wood smoke could induce EMT in human bronchial epithelial cells,while WSPM2.5 appeared to have a more significant influence on EMT in HBEC.
出处 《中华结核和呼吸杂志》 CAS CSCD 北大核心 2016年第10期784-790,共7页 Chinese Journal of Tuberculosis and Respiratory Diseases
基金 国家自然基金(81470233,81570035) 广东省自然科学基金(2014A030311040,2016A030313422) 广州市科学技术项目(201504010018)
关键词 颗粒物 上皮细胞 上皮-间充质细胞转换 Patriculate matter Epithelial cell Epithelial-Mesenchymal transition
  • 相关文献

参考文献27

  • 1Roper C, Chubb LG, Cambal L, et al. Characterization of ambient and extracted PM2.5 collected on filters for toxicology applications[ J]. Inhal Toxicol, 2015,27 ( 13 ) : 673-681.
  • 2Schikowski T, Mills IC, Anderson HR, et al. Ambient air pollution: a cause of COPD? [J]. Eur Respir J, 2014,43 (1) : 250-263.
  • 3Milara J, Peir6 T, Serrano A, et al. Epithelial to mesenchymal transition is increased in patients with COPD and induced by cigarette smoke[ J]. Thorax, 2013,68 (5) : 410-420.
  • 4Sohal SS, Reid D, Sohani A, et al. Evaluation of epithelial mesenchymal transition in patients with chronic obstructive pulmonary disease [ J]. Respir Res, 2011,12: 130.
  • 5Pain M, Bermudez O, Lacoste P, et al. Tissue remodelling in chronic bronchial diseases: from the epithelial to mesenchymal phenotype[ J ]. Eur Respir Rev, 2014,23 ( 131 ) : 118-130.
  • 6Hogg JC, Timens W. The pathology of chronic obstructive pulmonary disease [ J ]. Annu Rev Pathol, 2009,4:435-459.
  • 7Sohal SS, Ward C, Waiters EH. Importance of epithelial mesenchymal transition (EMT) in COPD and asthma[J]. Thorax, 2014,69 ( 8 ) :768.
  • 8Bartis D, Mise N, Mahida RY, et al. Epithelial-mesencbymal transition in lung development and disease: does it exist and is it important? [J]. Thorax, 2014,69(8):760-765.
  • 9Aoyagi K, Minashi K, Igaki H, et al. Artificially induced epithelial-mesenchymai transition in surgical subjects : its implications in clinical and basic cancer research [ J ]. PLoS One, 2011,6(4) :e18196.
  • 10Sato M, Shames DS, Hasegawa Y. Emerging evidence of epithelial-to-mesenchymal transition in lung carcinogenesis [ J ]. Respirology, 2012, 17 (7) : 1048-1059.

二级参考文献20

  • 1Hogg JC,Timens W. The pathology of chronic obstructive pulmonary disease[J].Annu Rev Pathol,2009.435-459.
  • 2Camara J,Jarai G. Epithelial-mesenchymal transition in primary human bronchial epithelial cells is Smad-dependent and enhanced by fibronectin and TNF-alpha[J].Fibrogenesis Tissue Repair,2010.2.
  • 3Ezzati M. Indoor air pollution and health in developing countries[J].{H}LANCET,2005.104-106.
  • 4Orozco-Levi M,Garcia-Aymerich J,Villar J. Wood smoke exposure and risk of chronic obstructive pulmonary disease[J].{H}European Respiratory Journal,2006.542-546.
  • 5Rivera RM,Cosio MG,Ghezzo H. Comparison of lung morphology in COPD secondary to cigarette and biomass smoke[J].{H}International Journal of Tuberculosis and Lung Disease,2008.972-977.
  • 6Gupta A,Shah A. Bronchial anthracofibrosis:an emerging pulmonary disease due to biomass fuel exposure[J].{H}International Journal of Tuberculosis and Lung Disease,2011.602-612.
  • 7Veljkovic E,Jiricny J,Menigatti M. Chronic exposure to cigarette smoke condensate in vitro induces epithelial to mesenchymal transition-like changes in human bronchial epithelial cells,BEAS-2B[J].{H}TOXICOLOGY IN VITRO,2011.446-453.
  • 8Zou W,Zou Y,Zhao Z. Nicotine-induced epithelialmesenchymal transition via Wnt/β-catenin signaling in human airway epithelial cells[J].{H}American Journal of Physiology Lung Cellular and Molecular Physiology,2013.L199-L209.
  • 9Sohal SS,Reid D,Soltani A. Evaluation of epithelial mesenchymal transition in patients with chronic obstructive pulmonary disease[J].{H}RESPIRATORY RESEARCH,2011.130.
  • 10Sohal SS,Walters EH. Epithelial mesenchymal transition (EMT) in small airways of COPD patients[J].{H}THORAX,2013.783-784.

共引文献2

同被引文献48

引证文献6

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部