期刊文献+

基于DWT的图像分块压缩感知重构算法

An Improved Image Blocking Compressed Sensing Algorithm Based on DWT
下载PDF
导出
摘要 运用压缩感知理论对大尺寸图像进行重构耗时较长,观测矩阵要求的存储空间较大,且重构后的图像存在明显的块状效应.根据图像小波变换系数的特点,将图像分块思想与DWT变换相结合,提出了一种改进的基于DWT的图像分块压缩感知算法.将图像子块经DWT变换后,保留图像低频系数,只对高频系数进行观测.重构时采用正交匹配追踪算法(OMP)对高频系数进行恢复.Matlab仿真结果表明,新算法跟基于DCT分块压缩感知算法相比,重构图像的PSNR值提高了2~4dB,重构时间明显减少,与基于二维离散余弦变换(DCT)的分块压缩感知算法相比,块效应有明显的改善,重构图像质量明显提高. Reconstruction of full image of large size by applying compressed sensing theory requires a long period of time, the observation matrix of linear measurement requires large space, and there is obvious block effect in the reconstructed image. According to the characteristics of the wavelet transformation co- efficients of the image, the image block is combined with the DWT transformation, and an improved DWT based image compressed algorithm is proposed. After the DWT transformation,the low frequency coefficients of each image block are preserved, and only the high frequency coefficients are observed. The high frequency coefficients are recovered by the orthogonal matching pursuit algorithm (OMP). Matlab simulation experiment shows that, compared with the non-block compressed sensing algorithm, the al- gorithm proposed increases the PSNR value of the reconstructed image by 2-4 dB and decreases the re- constructing time significantly; and compared with the two-dimensional discrete cosine transformation (DCT) block compressed sensing algorithm, this algorithm decreases the block effect and improves re- construction quality significantly.
出处 《吉首大学学报(自然科学版)》 CAS 2016年第5期27-31,共5页 Journal of Jishou University(Natural Sciences Edition)
基金 湖南省教育厅科学研究项目(14C0920 14C0923) 吉首大学校级课题资助项目(15JDY028 15JDY032)
关键词 压缩感知 图像分块 采样率 峰值信噪比 compressed sensing image blocking sampling rate peak signal to noise ratio
  • 相关文献

参考文献12

二级参考文献63

  • 1Donoho D L. Compressed Sensing [J]. IEEE Trans -actions on Information Theory, 2006, 52(4) : 1289 -1306.
  • 2Candes E. Compressive Sampling [ C]. Madrid, Spain: Proceedi -ngs of International Congress of Mathematicians, 2006: 1433 - 1452.
  • 3Candies E, Romberg J. Sparsity and Incoherence in Com- pressive Sampling [ J]. Inverse Problems, 2007, 23 (3) : 969 - 985.
  • 4Tropp J A, Gilbert A C. Signal Recovery From Rando - M Measurements Via Orthogonal Matching Pursuit [J]. IEEE Transactions on Information Theory, 2007, 53 (12): 4655 - 4666.
  • 5Candes E, Tao T. Decoding by Linear Programming [J]. IEEE Transactions on Information Theory, 2005, 51 (12) : 4203 - 4215.
  • 6Candes E, Romberg J, Tao T. Stable Signal Recovery From Incomplete and Inaccurate Measurements [J]. Communications on Pure and Applied Mathematics, 2006, 59 (8): 1207 - 1223.
  • 7E. Candes, M. Wakin. An introduction to compressive sampling [ J ]. IEEE Signal Processing Magazine, 2008,25(2) :21-30.
  • 8E. Candes, T. Tao, Robust uncertainty principle : Exact signal reconstruction from highly incomplete frequency information [J] , IEEE Trans. Inform. Theory,2006, 52:489-509.
  • 9D. L. Donoho, Compressed sensing [ J ] , IEEE Trans. In- form. Theory, 2006,52 : 1289-1306.
  • 10Y. Tsaig and D. L. Donoho, Extensions of compressed sensing [ J] , Signal Processing 2006,86:533-548.

共引文献102

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部