期刊文献+

陆地长距离通信用G.654.E新型光纤的开发 被引量:5

Developmentof the G.654.E Novelty Optical Fibers for Long-Haul Terrestrial Opitcal Fiber Communication
原文传递
导出
摘要 从电磁场基本理论出发,采用标量波动方程进行分析与计算,设计出了一种陆地长距离通信用G.654.E新型光纤的折射率剖面结构。然后采用连续化学气相沉积工艺制造出光纤预制棒,在2 100℃左右的高温下拉丝成包层直径为124.6μm的光纤。测试表明,该光纤的纤芯折射率为1.461 17,纤芯直径为14.0μm,内包层下凹环的折射率为1.455 65,宽度为6.96μm。该光纤在1 550nm波长的模场直径为13.85μm,有效面积为150μm2。该光纤在1 550nm波长的衰减为0.163dB/km,在1 625nm波长的衰减为0.176dB/km。22m光纤截止波长测试为1 490.6nm,小于1 510nm,有力保障了密集波分通信系统在光监控信道(OSC)的正常工作。国家通信干线工程应用表明该光纤的关键技术指标优于当前国际技术水平,能够满足陆地长距离大容量光纤通信的新需求。 In this paper,through the basic theory of electromagnetic field,using the scalar wave equation,we analyzed and calculated a kind of novelty G.654.E optical fibers’ refractive index waveguide for the long-haul terrestrial application.The optical fiber preform was fabricated by the Continual Chemical Vapor Deposition(CCVD)process,then the fiber with 125 micrometer cladding diameter was drawn at the 2 100℃temperature.The fiber's core index is 1.461 17,and its diameter is14.0μm.The depressed refractive index of the inner-cladding is 1.455 65,and its width is 6.96μm.The mode-field-diameter of 1 550 nm wavelength is 13.85μm,and the effective area of 1 550 nm is 150μm2.Their typical attenuation coefficients are 0.163dB/km,0.176dB/km at 1 550 nm and 1 625 nm wavelength respectively.The 22msample's cut-off wavelength is 1 490.6nm,below 1 510 nm wavelength,which could be used for the optical supervising channel(OSC)in the dense wavelength division multiplexing(DWDM)communication system.National communication trunk engineering applications show that their key technological specifications are much more superior than the international technological level at present,they can meet on the demands of the long haul terrestrial fiber communication.
出处 《光学与光电技术》 2016年第5期21-24,共4页 Optics & Optoelectronic Technology
基金 江苏省重点研发基金(BE2015078) 姑苏双创基金(ZXL2014107)资助项目
关键词 陆地长距离 高速光通信 超低损耗光纤 大有效面积光纤 信噪比 大容量 long haul terrestrial high-data-rate communication ultra-low-lossoptical fiber large-effective area large capacity
  • 相关文献

参考文献3

二级参考文献42

  • 1[1]Marcuse D et al.Effect of fiber nonlinearity on long distance transmission.IEEE J.Lightwave Technol,1991;(9):121~128
  • 2[2]Lenahan T A.Calaulation of modes in an optical fiber using the finite element method and EISPACK.The Bell System Technical Journal,1983;(62):2663~2694
  • 3[3]Agrawal G P.Nonlinear Fiber Optics.Second edition.California:Academic Press,1995:43
  • 4[4]Namihira Y.Wavelength dependence of correction factor on effective area and mode field diameter for various singlemode optical fibers.Electron.Lett.1997,(17):1483~1485
  • 5Ruffin A B, Downie J D, Hurley J. Pure reach 10 GE-PON architecture based on y passwe long duobinary sig- nals and ultra-low loss optical fiber[A]. Optical Fiber Communication Conference and Exhibition tional Fiber Optic Engineers Conference and on The Na- CD-ROM[C].2008,OTHL4.
  • 6John D Downie,Boh Ruffin A, Jason Hurley. Ultra-low-loss optical fiber enabling purely passive 10 Gb/s PON sys- tems with 100 km length[J]. Optics Express, 2009, 17 (4) ..2392-2399.
  • 7Matthieu Lancry, Elise Regnier, Bertrand Poumellec. Fic- tive temperature in silica-based glasses and its applica- tion to optical fiber manufacturing[J]. Progress in Materi- als Science, 2012,57 ( 1 ) : 63-94.
  • 8Hirano M,Yamamoto Y,Slieffer V A I M,et al. Analytical OSNA Formulation Validated with 100 G-WDM experi- ments and Optical subsea fiber proposal [A]. Proc. of OFO/NFOEO[C]. 2013, OTU2B. 6.
  • 9Maurer R D, Peter C S. Fused silica optical waveguide. Coming Glass Works[P]. Patent 3: 659,915, 1972-05- 02.
  • 10MacChesney J B, O'Connor P B, DiMarcello F V, et al. Preparation of low loss optical fibers using simultaneous vapor phase deposition and fusion[A]. Prec. of lOth Int. Congr. On Glass[C]. 1974,6-40.

共引文献17

同被引文献41

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部