期刊文献+

基于模糊核聚类的多模式情感识别算法研究

Research on multimodal emotion recognition algorithm based on fuzzy kernel clustering
下载PDF
导出
摘要 为了克服单模式情感识别存在的局限性,该文以语音信号和面部表情信号为研究对象,提出了一种新型的多模式情感识别算法,实现对喜悦、愤怒、惊奇和悲伤4种人类基本情感的识别。首先,将获取的信号进行预处理并提取情感特征参数,然后利用模糊核聚类算法对其进行聚类分析,即利用Mercer核,将原始空间通过非线性映射到高维特征空间,在高维特征空间中对多模式情感特征进行模糊核聚类分析。由于经过了核函数的映射,使原来没有显现的特征突现出来。实验结果验证了该方法的可行性和有效性。 In order to overcome the limitation of single mode emotion recognition. This paper described a novel multimodal emotion recognition algorithm, took speech signal and facial expression signal as the research subjects, and accomplished recognition for six kinds of human emotion (joy, anger, surprise, sadness). First, made some pre-processing and extracted emotion feature for speech signal and facial expression signal. Second, used the fuzzy kernel clustering for clustering analysis. That is to say, by using Mercer kernel function, the data in original space were mapped to a high-dimensional eigen-space, and then used the fuzzy clustering for the speech features in the high-dimensional eigen-space. Because of the kernel mapping, the feature inherent in the emotion signals explores, which improves the discriminations of the different emotion category. Experimental results verify the feasibility and effectiveness of the proposed method.
作者 韩志艳 王健
机构地区 渤海大学
出处 《电子设计工程》 2016年第20期1-4,共4页 Electronic Design Engineering
基金 国家自然科学基金资助(61503038 61403042)
关键词 多模式情感识别 语音信号 面部表情信号 模糊核聚类 multimodal emotion recognition speech signal facial expression signal fuzzy kernel clustering
  • 相关文献

参考文献15

  • 1Mao X, Chen L J. Speech emotion recognition based on parametric filter and fractal dimension [J]. IEICE Trans on Information and Systems, 2010,93 (8):2324-2326.
  • 2Attabi Y, Dumouchel P. Anchor models for emotion recognition from speech[J]. IEEE Trans on Affective Computing, 2013,4(3):280-290.
  • 3Zheng W M, Xin M H, Wang X Let al. A novel speech emotion recognition method via incomplete sparse least square regression[J]. IEEE Signal Processing Letters, 2014,21 (5):569-572.
  • 4Mao Q R, Dong M, Huang Z Wet al. Learning salient features for speech emotion recognition using convolutional neural networks [J]. IEEE Trans on Multimedia, 2014,16 (8) :2203 -2213.
  • 5Rahulamathavan Y, Phan R C -W, Chambers J A et al. Facial expression recognition in the encrypted domain based on local fisherdiscriminant analysis [J]. IEEE Trans on Affective Computing, 2013,4(1 ):83-92.
  • 6文沁,汪增福.基于三维数据的人脸表情识别[J].计算机仿真,2005,22(7):99-103. 被引量:10
  • 7Zheng W M. Multi-view facial expression recognition based on group sparse reduced-rank regression [J]. IEEE Trans on Affective Computing, 2014,5 ( 1 ) :71-85.
  • 8Petrantonakis P C, Hadjileontiadis L J. Emotion recognition from EEG using higher order crossings [J]. IEEE Trans on Information Technology in Biomedicine, 2010,14(2):186-197.
  • 9Zacharatos H, Gatzoulis C, Chrysanthou Y L. Automatic emotion recognition based on body movement analysis: a survey [J]. IEEE Computer Graphics and Applications, 2014,34(6):35-45.
  • 10Kim J, Andre E. Emotion recognition based on physiological changes in music listening[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2008,30 (12):2067- 2083.

二级参考文献39

  • 1伍忠东,高新波,谢维信.基于核方法的模糊聚类算法[J].西安电子科技大学学报,2004,31(4):533-537. 被引量:75
  • 2Zeng Z,Pantic M,Roisman G I,et al.A survey of affect recognition methods:audio,visual and spontaneous expressions[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,31(1):39-58.
  • 3Hoch S,Althoff F,McGlaun A,et al.Bimodal fusion of emotional data in an automotive environment[C]//Proceedings of the 2005 IEEE International Conference on Acoustics,Speech,and Signal Processing.Philadelphia,Pennsylvania,USA,2005:1085-1088.
  • 4Busso C,Deng Z,Yildirim S,et al.Analysis of emotion recognition using facial expressions,speech and multimodal information[C]//Proceedings of the Sixth International Conference on Multimodal Interfaces.Pennsylvania,USA,2004:205-211.
  • 5Wagner J,Kim J,Andre E.From physiological signals to emotions:implementing and comparing selected methods for feature extraction and classification[C]//Proceedings of the 2005 IEEE International Conference on Multimedia & Expo.Amsterdam,the Netherlands,2005:940-943.
  • 6Khiet T.How does real affect affect affect recognition in speech?[D].Enschede,the Netherlands:Center for Telematics and Information Technology of University of Twente,2009.
  • 7Tato R,Santos R,Kompe R,et al.Emotion space improves emotion recognition[C]//Proceedings of the 2002 International Conference on Speech and Language Processing.Denver,Colorado,USA,2002:2029-2032.
  • 8Schuller B,Rigoll G,Lang M.Speech emotion recognition combining acoustic features and linguistic information in a hybrid support vector machine-belief network architecture[C]//Proceedings of the 2004 IEEE International Conference on Acoustics,Speech,and Signal Processing.Montreal,Canada,2004:577-580.
  • 9Pittam J,Scherer K R.Vocal expression and communication of emotion[M].New York,USA:Guilford Press,1993:185-198.
  • 10Biemans M.Gender variation in voice quality[D].Nijmegen,the Netherlands:Department of Linguistics of Radboud University Nijmegen,2000.

共引文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部