摘要
完整的传感器数据是交通管理和控制的基础,但由于传感器自身或传输线路故障等原因,常常导致数据缺失,亟需对传感器缺失数据进行修复。鉴于此,以离散和连续缺失的线圈检测器交通流量数据为研究对象,构建基于RBF神经网络的数据修复模型。并将其结果与利用非线性回归模型、BP神经网络模型进行修复的结果相比较。RBF神经网络模型在离散缺失3个数据、连续缺失3个数据和连续缺失5个数据情况下,平均百分比绝对误差分别为0.67%,0.66%和1.33%,修复值和实测值的总体相关性为0.992,修复精度优于非线性回归模型和BP神经网络模型。研究结果表明,RBF神经网络模型与其他方法相比可更精确地进行交通数据修复。
Complete sensor data is the basis for traffic management and control. Because of the sensoritself and transmission line failures, data is often missed and needs repairing. Given this, RBF neuralnetwork model was developed to repair discrete and continuous missing data of inductance loop detector.The results of this model were compared with that of non-linear regression model and BP neural networkmodel. It shows that when the loop detector outputs miss three discrete data, three consecutive data andfive consecutive data, the percentage of the average absolute error for RBF neural network model are0.67%, 0.66% and 1.33% respectively; correlation between repaired value and measured value is 0.992.The repair precision of RBF neural network model is superior to that of the nonlinear regression modeland BP neural network model. Therefore, RBF neural network model can repair missing data more accu-rately compared with other methods.
出处
《交通运输研究》
2016年第5期46-52,共7页
Transport Research
基金
国家重点基础研究发展计划(973计划)项目(2012CB725403)
广东省智能交通系统重点实验室开放基金项目(201501005)
广东省高等职业教育教学改革项目(701622J30P13)
深圳职业技术学院科技基金项目(601422K30021)