摘要
设R_1,R_2,R'是3个有单位元的结合环,环R是环同态j_1:R_1→R'和j_2:R_2→R'的拉回环.首先引入了左R_1-模复形范畴与左R_2-模复形范畴的积范畴的一个子范畴C(T),利用拉回函子方法构造了一个加法函子P:C(T)→C(R-Mod),以及S:C(R-Mod)→C(T),证明了(S,P)是一对伴随对函子.其次,在此基础上,研究了相应的左导出范畴,也得到相应左导出范畴之间的伴随对函子.最后通过一个例子说明在同伦范畴上没有相应的伴随对函子.
Let R1 ,R2,R' be associative rings with identity, R be a pullback ring along with two homomorphisms of rings j1: R1→R' and j2: R2→R'. It introduces a subcategory C (J) of product category of the left R1-modules complex category and left RE-modules complex category, and then construct additive functors P: C(J)→C(R - Mod) ,S: C(R - Mod)→C(J), and show that (S, P) is a pair of adjoint functors in terms of the method of pullbacks. We also get the result on the corresponding left-derived categories. Finally it gives an example for illustrating that conclusion on the homotopy category is not hold.
作者
吴清凤
辛林
WU Qing-feng XIN Lin(College of Mathematics and Computer Science, Fujian Normal University, Fuzhou 350117, China)
出处
《福建师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2016年第6期6-12,共7页
Journal of Fujian Normal University:Natural Science Edition
基金
国家自然科学基金资助项目(11071049)
福建省自然科学基金资助项目(2011J01004)
关键词
伴随对
复形范畴
同伦范畴
导出范畴
adjoint pair
complex category
homotopy category
derived category