期刊文献+

基于核心用户对发现的微博好友推荐算法 被引量:2

Micro-blog friend recommendation algorithm based on finding of core user-pairs
下载PDF
导出
摘要 现有的微博好友推荐算法没有充分考虑网络关系结构,导致发现的邻居群合理性较差。针对这个问题,围绕微博用户群聚规律和社交网络特点展开研究,提出一种基于核心用户对发现的微博好友推荐算法;该算法首先将任意两个具有相互关注关系的用户封装成用户对的形式并计算各用户对之间的交互行为相似度,然后通过密度和距离两个参数发现核心用户对以及划分合理的邻居类簇,最后根据制定的推荐规则向用户进行好友推荐。结果表明,相比传统的协同过滤方法,该算法明显提高了微博好友推荐的精度,核心用户对发现、类簇的合理划分以及推荐规则的制定能够缓解数据稀疏和冷启动带来的问题。 The existing recommendation algorithms often do not fully consider network relationship structure, leading to find irra- tional neighbors. Therefore,according to micro-blog users' clustering rules and the characteristics of social network, an algorithm for micro-blog friend recommendation based on the finding of core user-pairs was proposed. Firstly, any two users who had friendship between each other were put into a user-pair, and the interaction similarities of all user-pairs were computed. Secondly, core user-pairs were found through two parameters, density and distance, and rationally classified into clusters. Finally, micro-blog friends were recom-mended to users according to recommendation rules. The results show that, compared with the traditional collaborative filtering methods, this method can greatly improve the precision of micro-blog friend recommendation, and the finding of core user-pairs, reasonable cluster classification and the recommendation rules can ease the problems of data sparseness and cold start.
作者 侯秀艳 刘培玉 王智昊 朱振方 HOU Xiuyan LIU Peiyu WANG Zhihao ZHU Zhenfang(School of Information Science and Engineering, Shandong Normal University, Jinan 250014, China School of Information Science and Electric Engineering, Shandong Jiaotong University, Jinan 250357, China)
出处 《济南大学学报(自然科学版)》 CAS 北大核心 2016年第4期256-262,共7页 Journal of University of Jinan(Science and Technology)
基金 国家自然科学基金(61373148) 山东省自然科学基金(ZR2012FM038)
关键词 微博 用户对 核心用户对发现 类簇划分 好友推荐 micro-blog user-pair finding of core user-pair cluster classification friend recommendation
  • 相关文献

参考文献6

二级参考文献121

  • 1郭岩,白硕,杨志峰,张凯.网络日志规模分析和用户兴趣挖掘[J].计算机学报,2005,28(9):1483-1496. 被引量:62
  • 2陈健,印鉴.基于影响集的协作过滤推荐算法[J].软件学报,2007,18(7):1685-1694. 被引量:59
  • 3Goldberg D,Nichols D,Oki B,Terry D.Using collaborative filtering to weave an information tapestry.Communications of the ACM,1992,35(12):61-70.
  • 4Resnick P,Iacovou N,Suchak M,Bergstorm P,Riedl J.GroupLens:An open architecture for collaborative filtering of netnews//Proceedings of the 1994 ACM Conference on Computer Supported Cooperative Work.Chapel Hill,North Carolina,United States,1994:175-186.
  • 5Shardanand U,Maes P.Social information filtering:Algorithms for automating "word of mouth"//Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.Denver,Colorado,United States,1995:210-217.
  • 6Hill M,Stead L,Furnas G.Recommending and evaluating choices in a virtual community of use//Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.Denver,Colorado,United States,1995:194-201.
  • 7Sarwar B M,Karypis G,Konstan J A,Riedl J.Application of dimensionality reduction in recommender system-A case study//Proceedings of the ACM WebKDD Web Mining for E-Commerce Workshop.Boston,MA,United States,2000:82-90.
  • 8Massa P,Avesani P.Trust-aware collaborative filtering for recommender systems.Lecture Notes in Computer Science,2004,3290:492-508.
  • 9Vincent S-Z,Boi Faltings.Using hierarchical clustering for learning the ontologies used in recommendation systems//Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.San Jose,California,United States,2007:599-608.
  • 10Park S-T,Pennock D M.Applying collaborative filtering techniques to movie search for better ranking and browsing//Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.San Jose,California,United States,2007:550-559.

共引文献467

同被引文献12

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部