期刊文献+

基于IPSO算法的回转窑煅烧带温度D-FNN预测控制

D-FNN predictive control for burning zone temperature in rotary kiln with IPSO algorithm
下载PDF
导出
摘要 为了提高石灰回转窑煅烧带温度的控制性能,提出一种基于改进的粒子群优化算法(IPSO)与动态模糊神经网络(D-FNN)的预测控制方法。该方法利用动态模糊神经网络建立石灰回转窑煅烧带温度的非线性预测模型,通过输出温度的预测值,引入输出反馈与偏差来校正预测误差,建立偏差与控制量的控制性能指标,通过改进的粒子群优化算法滚动优化得到系统最优控制量。对控制方法的稳定性进行分析。仿真实验结果表明动态模糊神经网络的温度预测误差在±10℃之内,具有较高的预测精度。提出的预测控制方法能使输出煅烧带温度快速稳定地跟踪设定值的变化,同时在系统输出有扰动的情况下也能较好地跟踪设定值。控制量的平均单步滚动优化需0.31 s,可满足实际应用。 In order to improve the control performance of burning zone temperature in lime rotary kiln,a predictive control method based on an improved particle swarm optimization(IPSO) and dynamic fuzzy neural network(D-FNN) was proposed. This predictive control method utilizes dynamic fuzzy neural network to build a nonlinear predictive model for burning temperature in lime rotary kiln.Through predictive output temperature, performance indicators were established by deviation and control value to reduce the error in feedback output error and error correction. The optimal control value was obtained by rolling optimization of improved particle swarm optimization algorithm. The stability of the control method was analyzed. The simulation results show that the temperature prediction error of the dynamic fuzzy neural network is within ±10 ℃, and has high prediction accuracy. The proposed predictive control method can make the burning zone output temperature fast and stable track the change of the setting value. The system can also track the setting value well with the disturbance of the system output. The average single step rolling optimization of control value needs 0.31 s, which can meet the practical application.
作者 田中大 高宪文 李树江 王艳红 TIAN Zhongda GAO Xianwen LI Shujiang WANG Yanhong(College of Information Science and Engineering, Shenyang University of Technology, Shenyang 110870, China College of Information Science and Engineering, Northeastern University, Shenyang 110819, China)
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2016年第10期3409-3416,共8页 Journal of Central South University:Science and Technology
基金 国家自然科学基金资助项目(61034005) 辽宁省博士启动基金资助项目(20141070)~~
关键词 回转窑 煅烧带温度 粒子群优化算法 动态模糊神经网络 预测控制 rotary kiln burning zone temperature particle swarm optimization dynamic fuzzy neural network predictive control
  • 相关文献

参考文献5

二级参考文献34

  • 1石玗,薛诚,樊丁,李建军.铝合金脉冲MIG焊过程解耦控制模型及仿真[J].焊接学报,2008,29(5):9-12. 被引量:7
  • 2石玗,樊丁,黄岸,陈剑虹.铝合金脉冲MIG焊熔宽动态过程的视觉传感辨识[J].金属学报,2005,41(9):994-998. 被引量:9
  • 3石玗,樊丁,李建军,陈剑虹.视觉传感铝合金脉冲MIG焊熔宽控制系统[J].焊接学报,2007,28(2):9-12. 被引量:5
  • 4KENNEDY J, EBERHART R C. Particle swarm optimization[C] //Proceedings of International Conference on Neural Networks. New York: IEEE, 1995: 1942- 1948.
  • 5EBERHART R C, SHI Y H. Particle swarm optimization: development, applications and resources[C]//Proceedings of the Congress on Evolutionary Computation. Piscataway: IEEE, 2001:81 - 86.
  • 6SHI Y H, EBERHART R C. Parameter selection in particle swarm optimization[C]//Proceeding of the 7th Annual Conference on Evolutionary Programming. Berlin: Springer-Verlag, 1998:591 - 600.
  • 7SHI Y H, EBERHART R C. Empirical study of particle swarm optimization[C]//Proceedings of Congress on Evolutionary Computation. Piscataway: IEEE, 1999:1945 - 1950.
  • 8EBERHART R C, SHI Y H. Comparing inertia weights and constriction factors in particle swarm optimization[C]//Proceedings of Congress on Evolutionary Computation. New York: IEEE, 2000:84 - 88.
  • 9陈德全,陈晶,崔素凭,等.水泥预分解技术与热工系统工程[M].北京:中国建材工业出版社,1998.
  • 10Carpenter G A, Crossherg S. A massively parallel architecture for a self-organizing neural pattern recognition machine [ J ]. Comp Vision Graphics and Image Process, 1987,37 (1) :54-115.

共引文献92

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部