期刊文献+

基于MOPA结构与高能量种子源的高功率皮秒掺铥光纤放大器(英文)

High Power Picosecond Thulium-doped Fiber MOPA with a High Energy Soliton Seed
下载PDF
导出
摘要 以单脉冲能量更高的孤子激光器为种子源,通过主振荡放大技术,获得了2μm波段的高功率、皮秒脉冲激光器.该种子源是一个被动锁模的光纤激光器,通过优化、管理激光器谐振腔内的色散,获得了脉冲宽度为50ps、重复频率为55.6 MHz、谱宽约为21nm的高能量孤子脉冲输出.利用单模光纤在2μm波段的负啁啾色散特性,在进行功率放大之前将作为种子源的激光脉冲宽度展宽至600ps.最后,经过两级放大之后,获得平均功率约23 W、脉宽为660ps的激光输出.利用光栅对,对放大后的激光脉冲进行压缩,经测试压缩后的脉冲宽度约为0.9ps. Thulium-doped fiber Master Oscillator Power Amplifier(MOPA)was demonstrated for high power picosecond laser within the 2μm wavelength range with a high energy soliton seed.The master oscillator was a passively mode-locked fiber laser,which can generate high energy soliton pulses with 50 ps pulse width,a repetition frequency of 55.6 MHz and a spectral width of^21nm by managing and optimizing its dispersion.The seed pulse was stretched to ~600ps by a spool of passive fiber with anomalous dispersion before sent to two amplified stages.Finally,average power of about 23 W and pulse duration of 660 ps were achieved before the pulse compressor.With a grating-pair compressor,the chirped pulse can be compressed to about 0.9ps.
出处 《光子学报》 EI CAS CSCD 北大核心 2016年第10期24-28,共5页 Acta Photonica Sinica
基金 The National Natural Science Foundation of China(Nos.61275136,11121504) the Research Fund for the Doctoral Program of Higher Education of China(No.20120073120085)
关键词 色散补偿 高能量 孤子种子源 主振荡放大 高功率 皮秒 掺铥 光纤激光器 Dispersion compensation High energy Soliton seed MOPA High power Picosecond Thulium-doped Fiber laser
  • 相关文献

参考文献1

二级参考文献13

  • 1Gauthier D. Slow light brings faster communication [J]. Phys. World, 2005, 18:30-32.
  • 2Kobyakov A, Saner M, Chowdhury D. Stimulated Brillouin scattering in optieal fibers [ J]. Adv. Opt. Photon. , 2010, 2(1) :1-59.
  • 3Chang-Hasnain C J, Chuang S L. Slow and fast light in semiconduetor quantum-well and quantum-dot deviees [ J ]. J. Lightwave Teehnol. , 2006, 24(12) :4642-4654.
  • 4Saynatjoki A, Mulot M, Ahopeho J, et al. Dispersion engineering of photonic crystal waveguides with ring-shaped holes [J]. Opt. Express, 2007, 15(13):8323-8328.
  • 5Hau L V, Harris S E, Dutton Z, et al. Light speed reduction to 17 metres per seeond in an uhracold atomic gas [ J ]. Nature, 1999, 397 (6720) :594-598.
  • 6Bigelow M S, Lepeshkin N N, Boyd R W. Observation of ultraslow light propagation in a ruby crystal at room temperature [J]. Phys. Rev. Lett. , 2003, 90(11):113903-1-4.
  • 7Schweinsberg A, Lepeshkin N N, Bigelow M S, et al. Observation of superluminal and slow light propagation in erbium- doped optical fiber [J]. Europhys. Lett. , 2006, 73(2) :218-224.
  • 8Shin H, Schweinsberg A, Gehring G, et al. Reducing pulse distortion in fast-light pulse propagation through an erbium- doped fiber amplifier [J]. Opt. Lett. , 2007, 32(8) :906-908.
  • 9Bencheikh K, Baldit E, Briaudeau S, et al, Slow light propagation in a ring erbium-doped fiber [ J]. Opt. Express, 2010, 18 (25) :25642-25648.
  • 10Qian K, Zhan L, Zhu Z Q, et al. Group velocity manipulation in active fibers using mutually modulated cross-gain modu- lation: From ultraslow to superluminal propagation [J]. Opt. Lett., 2011, 36(12) :2185-2187.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部