期刊文献+

基于移动平台的SIFT算法优化

An Optimization of SIFT Algorithm Based on Mobile Platform
下载PDF
导出
摘要 本文通过快速构建图像的低频信息图像,并完成其上的特征点检测,简化SIFT(Scale Invariant Feature Transform)图像匹配算法高斯空间构造的复杂度,以此来提高特征点检测效率,提高算法在移动设备上的运行速度,并在Android平台上将优化算法和SIFT算法进行对比。实验结果表明,优化的算法在多种场景下保证配准效果的同时提高了特征点检测速度,尤其是在旋转变化条件下效果更好。 Through the rapid construction of low-frequency information and the feature point detection of the image,simplified SIFT( Scale Invariant Feature Transform) image matching algorithm for a Gaussian spatial structure complexity to improve the efficiency of feature point detection and improve the algorithm running speed in mobile devices. Finally,the optimization algorithm and SIFT algorithm are compared in the Android platform. The experimental results show that the optimization algorithm ensure the registration effect and improves the detection speed of the feature points in a variety of scenarios,especially the effect of the rotation change is better.
出处 《长春师范大学学报》 2016年第10期39-41,101,共4页 Journal of Changchun Normal University
基金 安徽省自然科学重点项目"基于目标特征提取的公共交通车辆客流量检测系统设计与实现"(KJ2016A758)
关键词 低频图像 特征点检测 配准 low frequency image feature points detection registration
  • 相关文献

参考文献5

  • 1刘佳,傅卫平,王雯,李娜.基于改进SIFT算法的图像匹配[J].仪器仪表学报,2013,34(5):1107-1112. 被引量:97
  • 2柯杉,王博亮,黄晓阳.一种改进的SIFT算法及其在医学图像配准中的应用[J].厦门大学学报(自然科学版),2010,49(3):354-358. 被引量:14
  • 3Oxford. Visual geometry group -aglne covariant regions datasets[EB/OL]. (2004 -09 -19) [2015 -07 -07]. http://www. robots, ox. ac. ulC vgg/data/data - aft. html.
  • 4李刚.疯狂Android讲义[M],2版.北京:电子工业出版社,2014.
  • 5Lowe D. Distinctive image features from scale - invariant key - point [J]. International Journal of Computer Vision, 2004 ( 2 ) : 91 -110.

二级参考文献31

  • 1查宇飞,毕笃彦.基于小波变换的自适应多阈值图像去噪[J].中国图象图形学报(A辑),2005,10(5):567-570. 被引量:50
  • 2Lowe D G.Distinctive image features from scalek-invariant keypoints[J].International Journal of Computer Vision,2004,60(2):91-110.
  • 3Lindeberg T.Scale space theory:a basic tool for analyzing structures at different scales[J].Journal of Applied Statistics,1994,21:224-270.
  • 4Zitova B,Flusser J.Image registration methods:a survey[J].Image and Vision Computing,2003,21 (11):977-1000.
  • 5Moravec H.Rover visual obstacle avoidance[C]//International Joint Conference on Artificial Intelligence.San Francisco CA:Morgan Kaufmann Publishers Inc,1981:785-790.
  • 6Harris C,Stephens M.A combined corner and edge detector[C]//Fourth Alvey Vision Conference.UK:Manchester,1988:147-151.
  • 7Lowe D G.Object recognition from local scale-invariant features[C]//International Conference on Computer Vision.Washington DC:IEEE Computer Society,1999:1150-1157.
  • 8MORAVEC H P. Rover visual obstacle avoidance [ C ]. The seventh International Joint Conference on Artificial Intelligence, Vancouver, British Columbia, 1981 : 785 -790.
  • 9HARRIS C, STEPHENS M. A combined corner and edge detector[ C]. The 4th Alvey Vision Conference, Manches- ter, UK, 1988 : 147-151.
  • 10LOWE D G. Distinctive image features from scale invari- ant key points [ J ]. International Journal of Computer Vi- sion,2004,60 (2) :91-110.

共引文献108

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部