期刊文献+

太阳能热风发电系统性能参数数值模拟 被引量:3

Numerical simulation on performance parameters of solar power plant system
下载PDF
导出
摘要 为了全面衡量太阳能热风发电系统的性能,在常用热平衡方程的基础上,增加压力方程和理想气体状态方程,建立了太阳能热风发电系统中集热棚和烟囱的一维可压缩瞬态模型,计算系统内气流的温度、压力和密度分布,由此得出的系统总压差动态变化与相关文献的实际测量值基本一致。利用该模型分析烟囱形状参数对烟囱效率的影响,结果表明:烟囱效率随烟囱高度和烟囱直径的增加而增大;采用渐缩形烟囱会降低烟囱效率,而采用渐扩形烟囱会提高了烟囱效率且随烟囱倾角增大烟囱效率增加,但渐扩形烟囱倾角达到极值后再进一步增大时,烟囱效率几乎不再发生变化。 To comprehensively measure performance of the solar power generation system, based on the commonly used heat balance equations, the pressure equations and ideal gas status equations were added to establish the one dimensional compressible transient model for heat collecting shed and chimney in the solar power generation system. This model can calculate the distributions of temperature, pressure and density of the gas flow, it shows the dynamic variations of the total pressure difference of the system are in agreement with the literature test data. Moreover, this established model was applied to investigate the effects of structural parameters of the chimney on the chimney efficiency. The results show that, the chimney efficiency increases with the chimney height and diameter dramatically. Using convergent shape will decrease the chimney efficiency while the divergent shape can increase the chimney efficiency. However, when the chimney tilt angle further increases when it reaches the peak value, the chimney efficiency changes little.
作者 黄惠兰 李刚
出处 《热力发电》 CAS 北大核心 2016年第11期36-41,共6页 Thermal Power Generation
基金 国家自然科学基金项目(51266001 51466001)
关键词 太阳能热风发电 集热棚 烟囱 瞬态模型 烟囱效率 烟囱高度 烟囱直径 烟囱倾角 solar power generation, collector, chimney, transient model, chimney efficiency, chimney height, chimney diameter, chimney tilt angle
  • 相关文献

参考文献3

二级参考文献29

  • 1Schlaich J. The solar chimney: Electricity from the sun[M]. Stuttgart: Edition Axel Menges, 1995.
  • 2Haaf W, Friedrich K, Mayer G, et al. Solar chimneys, Part Ⅰ : Principle and construction of pilot plant in Manzanares [J]. International Journal of Solar Energy, 1983, 2(1): 3- 20.
  • 3Haaf W, Friedrich K, Mayer G, et al. Solar chimneys-Part Ⅱ : Preliminary test results from the Manzanares pilot plant [J]. International Journal of Solar Energy, 1984, 2: 141- 161.
  • 4Krisst R J K. Energy transfer system[J]. Alternative Sources of Energy, 1983, 63: 8-11.
  • 5Pasumarthi N, Sherif S A. Experimental and theoretical per- formance of a demonstration solar chimney model-part Ⅰ: Mathematical model development [ J ]. International Journal of Energy Research, 1998, 22(3): 277-288.
  • 6Pasumarthi N, Shefif S A. Experimental and theoretical per- formance of a demonstration solar chimney model-part Ⅱ : Experimental and theoretical results and economic analysis [J]. International Journal of Energy Research, 1998, 22(5) : 443-461.
  • 7Pastohr H, Kornadt O, Gurlebeck K. Numerical and analyti- cal calculations of the temperature and flow field in the upwind power plant [ J ]. International Journal of Energy Research, 2004, 28(6): 495-510.
  • 8Ming T Z, Liu W, Xu G L. Analytical and numerical investi- gation of the solar chimney power plant systems [ J ]. Interna- tional Journal of Energy Research, 2006, 30 ( 11 ) : 861- 873.
  • 9Gannon A J, Backstrom T W V. Solar chimney cycle analysis with system loss and solar collector performance [ J ]. Journal of Solar Energy Engineering, 2000, 122(3) : 133-137.
  • 10Michaud L M. Thermodynamic cycle of the atmospheric up- ward heat convection process[J]. Meteorology and Atmosperic Physics, 2000, 72( 1): 29-46.

共引文献34

同被引文献23

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部