摘要
研究如何抑制水面干扰,检测出水下目标是当前水声信号处理领域的研究重点。本文首先对接收数据协方差矩阵进行特征分解,利用每个特征值及其对应的特征向量生成子矩阵,然后根据目标的预估方位分离出目标信号占主导的子矩阵,累加重构协方差矩阵,从而达到抑制干扰的目的,提高输出信干比和目标方位估计准确性。数值仿真结果表明,该干扰抑制方法能够很好地抑制干扰,提取目标信息,检测出感兴趣目标,为后续的目标识别与跟踪创造有利条件。
Studying how to suppress the surface interference and detect the underwater target are the important point of the current acoustic signal processing area. In this paper, firstly the eigen-decomposition of received data covariance matrix is made, use each of the characteristic values and their corresponding eigenvector to generation sub-matrix.and then we eliminate the sub-matrix which dominated by target of interest depend on the estimated orientation of the target, and then accumulation the separated sub-matrix to reconstruction the covariance matrix dominated by target of interest, to achieve the purpose of suppressing interference, increase the output signal-to-interference ratio(SIR) and the accuracy of directions of arrival(DOA) estimates of the target of interest. Numerical simulation results show that this method can effectively suppress the interference, extract the information of target, detect the target of interest, improved condition can be used in detection and localization of target.
出处
《舰船科学技术》
北大核心
2016年第10期133-136,149,共5页
Ship Science and Technology
基金
国家自然科学基金资助项目(61271443)
关键词
协方差矩阵
特征分解
子矩阵
干扰抑制
covariance matrix
eigen-decomposition
sub-matrix
interference suppression