摘要
针对聚合物纳米复合材料次表面结构高分辨无损检测的需求,应用开尔文探针力显微镜(KPFM)对聚合物中导电填充物进行次表面纳米成像.首先,建立探针一纳米颗粒一基质体系的静电相互作用理论模型,分析聚合物中金属颗粒检测的成像机理;其次,通过有限元软件模拟并结合理论模型,系统研究针尖与样品间距、针尖半径等因素的影响;最后,制作聚合物和碳纳米管复合材料样品并进行基于KPFM的内部碳纳米管成像实验验证.结果表明:当针尖半径大约为1.5倍颗粒直径、间距较小时,成像效果较好;相较而言,探针锥角对成像结果影响不显著;KPFM对相对介电常数在3~10之间、颗粒直径越大、掩埋深度越小的内部纳米颗粒成像效果越好.
Subsurface imaging, performed with Kelvin probe force microscopy( KPFM), was investigated to identify conductive fillers embedded in polymer aiming to satisfy the need of high-resolution imaging of nanocomposites without damage. In this paper a theoretical model, describing the electrostatic interaction in the tip-particle-matrix system, was proposed to analyze the mechanism. Parameters such as tip-sample distance, radius of tip, and so forth were studied systematically by using finite element analysis (FEA) and theoretical model. Experiment validation was performed on a polyimide nanocomposite with carbon nanotubes buried inside. The results show that to obtain better subsurface images, a tip with a radius 1.5 times greater than the particle' s and a small tip-sample distance are preferred. Comparatively, the cone angle of the tip exerts less effect on electrostatic forces. Subsurface imaging on samples with relative die- lectric constants in the range of 3-10, large particle radius and small buried depth is much easier.
作者
熊晓洋
陈宇航
Xiong Xiaoyang Chen Yuhang(School of Engineering Science, University of Science and Technology of China, Hefei 230027, Chin)
出处
《纳米技术与精密工程》
CAS
CSCD
北大核心
2016年第6期402-409,共8页
Nanotechnology and Precision Engineering
基金
国家自然科学基金资助项目(51275503)