期刊文献+

白噪声激励下含线性振子的双稳态能量捕获器动力学特性研究

Dynamics Research of Bistable Energy Harvester with an Auxiliary Linear Oscillator under White Noise Excitation
下载PDF
导出
摘要 目前,将环境振动直接转换为电能已成为能量捕获器研究的热点。对附加线性振子的双稳态电磁式能量捕获系统建立了动力学方程,从数值仿真的角度研究了白噪声激励下含线性振子的双稳态能量捕获器的动力学行为,分析了噪声强度、系统质量比和频率比对发电性能的影响。计算结果表明,随着噪声强度、质量比和频率比的增大,双稳态发电振子的运动幅值在不断增大,并且会产生大幅混沌运动,同时系统的输出电压也在不断增大,为双稳态电磁式能量捕获系统的相关研究提供了理论基础。 The progress of science and technology makes the environment vibration into electrical energy as possible, now it has become the hot topics in the study of energy harvester. The system dynamics equation of bistable electromagnetic energy harvester with an auxiliary linear oscillator is established, from the perspective of numerical simulations to study dynamic behavior of bistable energy harvester with an auxiliary linear oscillator under white noise excitation; the effects of noise intensity, mass ratio and frequency ratio of the system on the electricity generating performance are analyzed. The computed results show that with the noise intensity, mass ratio and frequency ratio increase, the motion amplitude of bistable power oscillator is increased, and will generate substantial chaotic motion, while the output voltage of the system is also in constant increase. The study provides a theoretical basis for bistable electromagnetic energy harvester system research.
出处 《机械科学与技术》 CSCD 北大核心 2016年第11期1657-1664,共8页 Mechanical Science and Technology for Aerospace Engineering
基金 国家自然科学基金项目(11572243)资助
关键词 白噪声激励 双稳态能量捕获器 噪声强度 质量比 频率比 white noise excitation bistable energy harvester noise intensity mass ratio frequency ratio
  • 相关文献

参考文献2

二级参考文献38

  • 1AMIRTHARAJAH R, CHANDRAKASAN A P. Self-powered signal processing using vibration-based power generation [J]. IEEE J Solid State Circuits, 1998, 33 (5):687 - 695.
  • 2MITCHESON P D, YEATMAN E M, RAO G K, et al. Energy harvesting from human and machine motion for wireless elec- tronic devices [J]. Proceedings of the IEEE, 2008, 96 (9): 1457 - 1485.
  • 3ELVIN N G, ELVIN A A. Vibrational energy harvesting from human gait [J]. IEEE/ASME Transactions on Mechatronics, 2012, 99 (2):1-8.
  • 4RAISIGEL H, CUGAT O, DELAMARE J. Permanent mag- net planar micro-generators [J]. Sensors and Actuators:A, 2006, 130 (10): 438-444.
  • 5SASAKI K, OSAKI Y, OKAZAK J, et al. Vibration-based automatic power-generation system [J]. Microsyst Technol, 2005, 11 (1): 8-10.
  • 6BUREN T V, TROSTER G. Design and optimization of a li- near vibration-driven electromagnetic micro-power generator [J]. Sensors and Actuators: A, 2007, 135 (4) : 765 - 775.
  • 7谢处方,饶克谨.电磁场与电磁波[M].北京:高等教育出版社,2007:62-66.
  • 8KHALIGH A, ZENG P, ZHENG C. Kinetic energy harves- ting using piezoelectric and electromagnetic technologies-state of the art [J]. IEEE Transactions on Industrual Electronics, 2010, 57 (3): 850-860.
  • 9ZORLU O, TOPAL E T, KULAH H. A vibration-based electromagnetic energy harvester using mechanical frequency up-conversion method [J]. IEEE Sensors Journal, 2011, 11 (2) : 481 - 488.
  • 10BOUENDEU E, GREINER A, SMITH P J. A low-cost electromagnetic generator for vibration energy harvesting [J]. IEEE Sensors Journal, 2011, 11 (1) : 107 - 113.

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部