期刊文献+

基于非线性扩散滤波结构信息的图像去噪方法 被引量:2

Image denoising method based on structure information of nonlinear diffusion filtering
下载PDF
导出
摘要 为在去除噪声的同时保持更多的边缘信息,利用拉普拉斯算子的旋转不变性提出一种适用于更多角度的拉普拉斯算子模板,根据模板适应角度的不同提出相应的权重函数,使非线性扩散滤波在原有的去噪基础上能够自适应地选取对应的算子对含噪图像进行扩散处理。实验结果表明,该方法在去除噪声的同时可以保持更多的边缘信息。 To retain more marginal information while denoising,by utilizing the rotational invariance of Laplacian kernel,a Lapacian kernel was proposed to fit different angles and the corresponding weighting function was put forward to make the nonlinear differential filter self-adapted.Experimental results show that the proposed method is able to enhance the edge-preservation capability.
作者 张建伟 王译禾 陈允杰 ZHANG Jian-wei WANG Yi-he CHEN Yun-jie(College of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing 210044, China)
出处 《计算机工程与设计》 北大核心 2016年第11期2971-2978,共8页 Computer Engineering and Design
基金 国家自然科学基金项目(61173072 41174164)
关键词 非线性偏微分方程 图像去噪 拉普拉斯算子 梯度信息 边缘信息 nonlinear partial differential equations image denoising Laplacian kernel gradient information marginal information
  • 相关文献

参考文献2

二级参考文献22

  • 1Licw A W C, Yah H. An adaptive spatial fuzzy clustering algorithm for 3-D MR image segmentation [J]. IEEE Trans on Medical Imaging, 2003, 22(19): 1063-1075.
  • 2Kim C, You B J, Jeong M H, et al. Color segmentation robust to brightness variations by using B-spline curve modeling [J]. Pattern Recognition, 2008, 41(1) : 22-37.
  • 3Jungke M, Seelen W V, Bielke G, et al. A system for the diagnostic use of tissue characterizing parameters in NMR-tomography [C] //Proc of Information Processing in Medical Imaging. Berlin: Springer, 1987:471-481.
  • 4Collewet G, Davenel A, Toussaint C, et al. Correction of intensity nonuniformity in spin-echo T1 weighted images[J]. Magnetic Resonance Imaging, 2002, 20(4):365-373.
  • 5Tincher M, Meyer C R, Gupta R, et al. Polynomial modeling and reduction of RF body coil spatial inhomogeneity in MRI [J]. IEEE Trans on Medical Imaging, 1993, 12(2): 361-365.
  • 6Cohen S M, DuBois R M, Zeineh M M. Rapid and effective correction of RF inhomogeneity for high field magnetic resonance imaging [J]. Human Brain Mapping, 2000, 10(4): 204- 211.
  • 7Vokurka E A, Thacker N A, Jackson A. A fast model independent melhod for automatic correction of intensity nonuniformity in MRI data[J]. Journal of MagneticResonance, 1999, 10(3):550-562.
  • 8Ashburner J, Friston K J. Voxel-based morphometry: The methods[J]. Neuroimage, 2000, 11(6): 805 821.
  • 9Wells W M I, Grimson W E L, Kikinis R. Adaptive segmentation of MRI data [J]. IEEE Trans on Medical Imaging, 1996, 15(4): 429-442.
  • 10Dulyakarn P, Rangsaseri Y. Fuzzy C Mecns clustering using spatial information with application to remote sensing[C] // Proc of the 22nd Asian Conf on Remote Sensing. Berlin: Springer, 2001:5-9.

共引文献3

同被引文献9

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部