摘要
为了研究随机需求情形下多级配送网络的库存-选址优化策略,采用以系统总成本最低为目标函数构建库存配置与选址决策模型,并利用遗传算法求解。分析了配送中心的选址方案、需求点的分配、集中存储组的划分、集中存储点的选择和部分跨级存储系数对总成本的影响。结果表明:部分跨级存储策略和安全库存集中存储策略都能够有效地降低系统安全库存;部分跨级存储系数的最优取值和集中存储组的分组方案都受到其他参数的影响。
In order to study the inventory-location optimization strategy for multi-echelon distribution network under stochastic condition, we constructed the inventory allocation and location decision model with the lowest total system cost as objective function, and adopted genetic algorithm to calculate the model. We analysed the effect on the total cost by the decision variables which include location scheme of distribution center, allocation of demand points, division of centralized storage group, choice of centralized storage point and coefficient of partial cross-level storage. The result shows that (1) both the partial cross-level storage strategy and the centralized storage strategy of safety stock can effectively reduce system safety stock; ( 2 ) both the optimal values for coefficients of the partial cross-level storage and the division scheme of the centralized storage group are effected by other variables.
出处
《公路交通科技》
CAS
CSCD
北大核心
2016年第11期152-158,共7页
Journal of Highway and Transportation Research and Development
基金
国家自然科学基金面上项目(41271175)
2015年广州市哲学社会科学"十二五"规划课题项目(15Y65)
关键词
运输经济
库存-选址决策模型
遗传算法
配送网络
部分跨级
集中存储
transport economics
inventory-location decision model
genetic algorithm
distribution network
partial cross-level
centralized storage