摘要
Riemann面上带有奇点的度量是复几何中重要的研究对象.对Riemann面上带有cusp奇点且满足面积和Calabi能量有限的共形度量进行研究,得到HCMU度量在cusp奇点附近精确的表达式.
The metric on Riemann surface with singularities is one of geometry. We study conformal metrics on Riemann surfaces with only and Calabi energy are both finite, and obtain the exact expression important objects in complex cusp singularities, whose area of HCMU metrics near cusp singularities.
出处
《中国科学院大学学报(中英文)》
CSCD
北大核心
2016年第6期721-728,共8页
Journal of University of Chinese Academy of Sciences
基金
国家自然科学基金面上项目(11471308)资助