期刊文献+

基于感知模糊自适应蚁群算法的非线性PID控制设计 被引量:4

Nonlinear PID Control Design Based on Sensation Fuzzy Self-adaptive Ant Colony Optimization
下载PDF
导出
摘要 随着系统复杂度的提高和对象不确定性因素的增加,为克服线性PID动态性能和稳态性能差的缺陷,分析了非线性PID控制器各控制参数对误差的理想变化过程,构造非线性PID控制器;由于增益参数大量增加,传统参数优化方法不再适用,在分析蚁群算法的基础上,提出了基于感知自适应蚁群算法结合模糊自适应信息素更新机制用于优化非线性PID控制器的设计方法;通过仿真实验将该控制器与基于蚁群算法的非线性PID控制器和基于蚁群算法、Z-N法的PID控制器进行对比,并对控制性能和收敛性能进行了分析,结果表明该算法有效克服了传统蚁群算法收敛速度较慢、容易陷入局部最优而停滞的缺陷,该控制器具有更好的动态性能和稳态性能。 With the system complexity and objects uncertainties increasing, for overcoming the defect of linear PID controller, a nonlinear PID controller was constructed by analyzing the ideal varying process of the individual tuning nonlinear PID controller concerning error. The traditional optimization was inapplicable due to the quantity of gain parameters increasing. On the basis of analyzing the ant colony optimization (ACO), the self--adaptive ant colony optimization based on sensation associated with fuzzy self--adaptive update mechanism of pheromone was used to design the nonlinear PID controller. The controller was compared with nonlinear PID controller based on ACO, linear controller based on ACO and Z--N in simulation, their control performance and convergence performance were analyzed. The results show that the algorithm overcomes the defect of traditional ACO effectively which is slow in converging, possible to sink into local optimum and effected by initial value, and the controller has better dynamic performance and steady performance.
出处 《计算机测量与控制》 2016年第11期91-94,99,共5页 Computer Measurement &Control
基金 国家自然科学基金(11572036)
关键词 非线性PID控制 蚁群算法 自适应 模糊控制 nonlinear PID control ant colony optimization self--adaptive fuzzy control
  • 相关文献

参考文献6

二级参考文献74

共引文献99

同被引文献36

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部