期刊文献+

一种自适应压缩感知图像重构算法 被引量:2

An Image Reconstruction Algorithm Based on Adaptive Compression Sensing
下载PDF
导出
摘要 为解决稀疏度未知图像的重构问题,基于小波变换提出了一种自适应压缩感知算法。详细论述了压缩感知算法的基本原理。利用小波变换对图像进行分解,得到高频子带和低频子带。考虑到各部分的稀疏性,仅对高频子带进行测量,保持低频子带不变,并将图像分为高高、高低、低高、低低等模块进行处理。针对稀疏度未知的情况,采用稀疏度自适应匹配追踪算法分别对包含在高频子带各部分中的高频系数进行恢复,通过小波逆变换进行图像重构。最后,以Pepper和Baboo图像为例进行了仿真实验。仿真结果表明,所述算法可较好地实现图像重构,能够提高图像重构质量,验证了所述压缩感知算法的有效性。 In order to solve the problem of image reconstruction with unknown sparse degree, an adaptive compression sensing algorithm is proposed based on wavelet transform. The basic principle of compression sensing algorithm is described in detail. The image decomposition is carried on by using wavelet transform. The high-frequency and low-frequency sub-bands are obtained. Considering the sparse property of each part, the high frequency sub-band is measured while the low frequency sub-band is unchanged. And the image is divided into high-high, high-low, low-high and low high blocks for processing. Aiming at the condition with unknown sparse degree, the high-frequency coefficients contained in all parts of the high-frequency sub-band are recovered based on the sparse degree adaptive matching pursuit algorithm. The image reconstruction is realized by using wavelet inverse transform. Finally, take Pepper and Baboo images as examples, the simulation experiments are carried out. The simulation results show that this algorithm can well realize the image reconstruction and improve the quality of image reconstruction. The effectiveness of the compressed sensin- algorithm described is also verified.
作者 王芳 汪伟
出处 《控制工程》 CSCD 北大核心 2016年第11期1808-1812,共5页 Control Engineering of China
基金 2015年河南省重点科技攻关项目(152102210176)
关键词 图像重构 小波变换 压缩感知 自适应匹配追踪 稀疏度 Image reconstruction wavelet transform compression sensing adaptive matching pursuit sparse degree
  • 相关文献

参考文献8

二级参考文献84

  • 1时贞军,孙国.无约束优化问题的对角稀疏拟牛顿法[J].系统科学与数学,2006,26(1):101-112. 被引量:32
  • 2Candes E J, Romberg J, Tao T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency infnrmation [ J ]. IEEE Trans. Information Theory, 2006, 52 ( 2 ) : 489 - 509.
  • 3Donoho D L. Compressed sensing[ J]. IEEE Trans. Information Theon, 2006, 52(4) : 1289 - 1306.
  • 4Tropp J A, Gilbert A C. Signal recover) from random measurements via orthogonal matching pursuit [ J ]. IEEE Trans. Inform. Theory, 2007, 53:4655 -4666.
  • 5Miosso C J, Borries R yon, Argaez R M, et al. Compressive sensing reconstruction with prior information by iteratively reweighted least-squares [ J ]. Signal Processing, IEEE Transactions on, 2009, 57(6) :2424 -2431.
  • 6Figneiredo M A T, Nowak R D, Wright S J. Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems [ J ]. Joumal of Selected Topics in Signal Processing, 2007,1 (4) :586 - 598.
  • 7Blumensath T, Davies M E. Iterative thresholding for sparse approximations [ J ]. J. of Fourier Analysis and Applications, 2008, 14:629 - 654.
  • 8Peyre G. Best basis compressed sensing [ J ]. Signal Processing, IEEE Transactions on, 2010, 58 (5) :2615 - 2622.
  • 9Chuo-Ling Chang, Girod B. Direction-adaptive discrete wavelet transform for image compression [ J ]. IEEE Trans. Image Processing, 2007, 16 (5) : 1289 - 1302.
  • 10Ding W P, Wu F, Wu X L, et al. Adaptive directional lifting- based wavelet transform for image coding [ J ]. IEEE Trans. Image Processing, 2007, 16(2) : 416 -427.

共引文献103

同被引文献6

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部