期刊文献+

一种有效的激光光斑中心检测算法研究 被引量:11

An Efficient Detection Algorithm for Laser Spot Center
下载PDF
导出
摘要 激光光斑中心的准确定位对光学检测精度起着决定性作用。传统圆拟合算法消噪能力不强,导致预测失准。通过图像处理和数据分析进行消噪,引入圆拟合率,排除误差较大噪声点干扰。提出基于二维向量空间圆拟合算法,将原始光斑图像映射到二维向量空间,根据圆光斑的几何性质,组建超定方程组求解光斑中心坐标和半径。实验结果表明,该方法在满足实时性前提下,检测精度优于传统重心法与Hough变换法,适合各种复杂环境下的光斑中心检测。 The precise location of the laser spot center plays a decisive role in the precision detection optical system. For the traditional circle fitting algorithm, the noise cancellation capability is not effective, so it's easy to cause the final forecast is incorrect. In order to effectively eliminate the error noise interference, this paper uses an eliminating noise method based on image processing and data analysis and introduces the concept of circle fitting rate. This paper presents a circle fitting algorithm based on two-dimensional vector space. In this algorithm, the original image is mapped into a two-dimensional vector space. According to the geometrical properties of circular spot, over-determined equations are listed and solved for obtaining the spot center coordinates and radius. Experimental results show that to meet the premises of real-time measurement, the accuracy of this algorithm is superior to the traditional algorithms such as gravity model and Hough transform. This algorithm is suitable for spot center detection in all kinds of complicated environment.
出处 《控制工程》 CSCD 北大核心 2016年第11期1813-1819,共7页 Control Engineering of China
基金 国家自然科学基金(61202376 61374039) 上海市自然基金(15ZR1429100) 沪江基金(C14002)
关键词 激光光斑 二维向量空间 圆拟合 图像处理 Laser spot two dimensional vector space circle fitting image processing
  • 相关文献

参考文献3

二级参考文献35

  • 1周铭,许少辉.一种红外小目标的图像检测方法[J].半导体光电,2004,25(3):224-227. 被引量:7
  • 2陈延梅,吴勃英.基于数学形态学的图像增强方法[J].哈尔滨工业大学学报,2006,38(6):906-908. 被引量:12
  • 3章毓晋.图像工程[M].北京:清华大学出版社,2005:10.
  • 4Gander W ,Golub G H, Strebel R, et al. Least-squares fitting of circles and ellipses [ J ]. BIT Numerical Mathematics, 1994,34 (4) :558 -578
  • 5Rosin P L. Ellipse fitting by accumulating five-point fits [ J ]. Pattern Recognition Letters, 1993,14 ( 8 ) :661 - 669
  • 6Forbes A B. Least-squares best fit geometric elements[ C]//Algorithms for Approximation II. London: Chapman and Hall, 1990:311 -319
  • 7Fischler M A, Bolles R C. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography[J].Communications of the ACM, 1981,24 (6) :381 -395
  • 8张雷,赵明扬,王立柱,高世一.基于数学形态学的激光拼焊熔池图像处理研究[J].仪器仪表学报,2007,28(9):1668-1672. 被引量:9
  • 9Tonissen S M,Bar-Shalom Y.Maximum likelihood track-before-detect with fluctuating target amplitude[J].IEEETrans.On AES,1998,34(3):796-806.
  • 10Tom V,Peli T,leung M.Morphology-based algorithm forpoint target detection in infrared backgrounds[J].Proc ofSPIE,1993,15(6):2-5.

共引文献206

同被引文献137

引证文献11

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部