期刊文献+

一个带休眠期反应扩散模型常数平衡解的全局稳定性

The Global Asymptotic Stability of a Reaction-diffusion Model with a Quiescent Stage
下载PDF
导出
摘要 对一个带休眠期的反应扩散模型建立了Lyapunov泛函,由此得到了其常数平衡解的全局渐近稳定性. The Lyapunov functional is established for a reaction diffusion model with a resting stage,and the global asymptotic stability of the constant equilibrium solution is obtained.
出处 《菏泽学院学报》 2016年第5期36-39,共4页 Journal of Heze University
关键词 休眠期 反应扩散模型 常数平衡解 LYAPUNOV泛函 quiescent stage reaction-diffusion model constant equilibrium solutions Lyapunov functional
  • 相关文献

参考文献1

二级参考文献12

  • 1J]N Yu, ZHAO Xiao-qiang. Spatial dynamics of a non-local periodic reaction diffusion model with stage structure[J]. SIAMJ Math Anal, 2009, 40(23): 2496-2516.
  • 2GOURLEY S, KUANG Y. Wavefronts and global sta?bility is a time-delayed population model with stage structure[J]. R Soc Lond Proc, Ser A: Math Phys Eng Sci, 2003, 459(2034): 1563-1579.
  • 3GOURLEY S, SoJ, WuJ. Non-locality of reaction?diffusion equations induced by delay: biological modeling and nonlinear dynamics[J).J Math Sci, 2004, 124(4): 5119-5153.
  • 4SoJ, WuJ, Zou X. A reaction-diffusion model for a single species with age structure: I. traveling wave fronts on unbounded domains[J]. Proc R Soc Lond A, 2001, 457(2012): 1841-1853.
  • 5THIEME H, ZHAO Xiao-qiang. Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction-diffusion models[J].J Differen?tial Equations, 2003, 195(2): 430-470.
  • 6Xu Da-shun, ZHAO Xiao-qiang. A non local reaction?diffusion population model with stage structure[J]. Can Appl Math Q, 2003, 11(3): 303-320.
  • 7LIANG Xing, YI Ying-fei, ZHAO Xiao-qiang. Spread?ing speeds and traveling waves for periodic evolution systems[J].J Differential Equations, 2006, 21(231): 57-77.
  • 8PETER Hess. Periodic-parabolic boundary value problems and positivity[M). Essex: Longman Sci?entific and Technical, 1991: 20-38.
  • 9MARTIN R, SMITH H. Abstract functional differ?ential equations and reaction-diffusion systems[J]. Trans Amer Math Soc, 1990,321(1): 1-44.
  • 10SMITH H. Monotonic dynamical systems: an intro?duction to the theory of competitive and coopera?tive systems[Mil /Mathematical Surveys and Mono?graphs. Providence: American Mathematical Soci?ety, 1995: 124-126.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部