期刊文献+

基于Hartmann谐振腔的雾化喷嘴声场流场特性 被引量:4

Aeroacoustic and flow field features of ultrasonic atomizer based on Hartmann resonance tube
原文传递
导出
摘要 采用试验与数值模拟相结合的方法研究了谐振腔孔径、谐振腔深度、谐振腔与射流喷孔距离以及喷嘴压比(NPR)对基于Hartmann谐振腔(HRT)的气动式超声波雾化喷嘴外部流场及声场的影响.结果表明:当喷嘴压比大于2时,喷嘴压比增大对声场频率影响较小;当喷嘴压比小于2时,谐振腔依然能够产生高频声场,但其频率较高喷嘴压比时产生的小.当谐振腔深度小于1倍射流喷孔孔径时,此时高频声场主要由射流的不稳定性引发,声场频率与谐振腔深度经验关系式此时并不适用;当谐振腔孔径大于1.75倍射流喷孔孔径时,声场频率大小有降低趋势.谐振腔与射流喷孔距离与声场频率关系紧密,当谐振腔放置在自由射流压力增大区域时,才可获得理想高频声场. Experimental and numerical studies were carried out to investigate the effects of operation parameters, such as diameter of resonance tube, resonance tube depth, jet nozzle hole to resonance tube spacing and nozzle pressure ratio (NPR), on the flow and acoustic field characteristics of a ultrasonic atomizer based on the Hartmann resonance tube (HRT). The modifications of the geometry of HRT in spectral and flow field characteristics were studied in detail. Result shows that that, when NPR is higher than 2, the increase of NPR has little effect on the frequency, however, when NPR is lower than 2, the lower frequencies of the acoustic field are obtained. The simulation results of flow field suggest that when the length of the resonance tube is smaller than diameter of jet nozzle hole, the reciprocating phenomenon of flow in the cavity is dampened, leading to a decrease of acoustic field frequency compared with cases having longer resonance tube length, and the classical relation between acoustic field frequency and tube resonance length is not appropriate for these situations. Also, the oversized diameter of resonance tube (typically, the diameter of resonance tube more than 1.75 times the diameter of jet nozzle hole) results in a lower oscillation acoustic field frequency for the interaction of the reciprocating and the shock is weakened. Furthermore, resonance occurs when the cavity is put in the regions where pressure arises for free jet.
出处 《航空动力学报》 EI CAS CSCD 北大核心 2016年第9期2104-2114,共11页 Journal of Aerospace Power
基金 国家自然科学基金(51406171) 中央高校基本科研业务费(20720150180) 福建省自然科学基金(2015J05111)
关键词 Hartmann谐振腔 超声波雾化 气动声场 S-A湍流模型 气动喷嘴 Hartmann resonance tube ultrasonic atomization aeroacoustic fieldSpalart-Allmaras turbulence model air blast atomizer
  • 相关文献

参考文献5

二级参考文献39

  • 1.电厂燃油设计:第1册[M].武汉:湖北省电力设计院,1975..
  • 2魏振军.新型超声波火嘴[J].石油化工设备技术,1996,17(3):51-52.
  • 3Katsuhiko Yamamoto et al.Bumer with Ultrasonic Vibrator[M]. U S A, Patent: 4,165,961. 1979.
  • 4朱永刚,王兴甫.超声波喷嘴试验研究[J].推进技术,1997,18(3):68-72. 被引量:5
  • 5应崇福.超声学[M].北京:科学出版社,1974..
  • 6方开泰 马长兴.正交设计与均匀设计[M].北京:科学出版社,2001..
  • 7马大猷.声学手册[M].北京:科学出版社,1983..
  • 8Mansour A,Chigier N,Shih T,et al.The effects of the Hartman cavity on the performance of the USGA nozzie needed for aluminum spray forming[J].Atomization and Sprays,1998,8(1):1-24.
  • 9Roe P L.Approximate Riemann solvers,parameter vectors,and difference schemes[J].Journal of Computational Physics,1981,43(2):357-372.
  • 10Brocher E,Duport E.Resonance tubes in a subsonic flow fied[J].AIAA J,1988,26(5):548-552.

共引文献66

同被引文献29

引证文献4

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部