期刊文献+

基于AFI的快速发射场B_1^+成像方法 被引量:1

Rapid B_1^+ Mapping Based on Actual Flip-Angle Imaging
下载PDF
导出
摘要 该文提出了一种基于实际翻转角成像(Actual Flip-angle Imaging,AFI)的快速发射场测量方法(Fast AFI,FAFI),将多次激发平面回波成像(Multi-shot Echo Planar Imaging,Multi-shot EPI)的采集方式运用于AFI发射场(B_1^+)测量中,充分利用AFI序列中采集的等待时间,高倍数加速了水模和人体头部、腹部及盆腔的发射场测量.该文在水模和人体(n=16)实验中,验证了采用FAFI序列得到的B_1^+测量结果与AFI结果的一致性.FAFI序列大幅加速了发射场测量,为实现动态B_1^+匀场(B_1^+shimming)和快速局部激发提供了高效的发射场测量方法. We propose a fast B1^+ mapping method (FAFI) based on actual flip-angle imaging (AFI), in which the single-echo gradient echo (GRE) acquisition in the conventional AFI sequence is replaced by a multi-shot echo planar imaging (Multi-shot EPI) acquisition. FAFI makes full use of the waiting time, and thus has greatly increased imaging speed. We evaluated the performance of FAFI on phantoms and human subjects (n=16), and compared the results with those obtained using the conventional AFI method. It was demonstrated that it was possible to achieve high acceleration factor with FAFI, while preserving good consistency with the conventional AFI results. FAFI provides a powerful tool for dynamic B1^+ mapping, and may find applications in dynamic B1^+ shimming and rapid spatially selective radio frequency (RF) excitation.
作者 周子堃 胡凌志 蒋瑞瑞 贺强 张卫国 陈群 ZHOU Zi-kun HU Ling-zhi JIANG Rui-rui HE Qiang ZHANG Wei-guo CHEN Qun(Center for Advanced Medical Imaging Technology, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China University of Chinese Academy of Sciences, Beijing 100049, China Shanghai United Imaging Healthcare Cooperation, Shanghai 201800, China)
出处 《波谱学杂志》 CAS CSCD 北大核心 2016年第4期515-527,共13页 Chinese Journal of Magnetic Resonance
基金 中国科学院重点部署项目(Y325511211)
关键词 磁共振成像(MRI) 发射场图 实际翻转角成像(AFI) 平面回波成像(EPI) 动态匀场 MRI, B1^+ mapping, actual flip-angle imaging (AFI), echo planar imaging (EPI), dynamic B1^+ shimming
  • 相关文献

参考文献1

二级参考文献34

  • 1Lauterbur P C. Image formation by induced local interactions: Examples of employing nuclear magnetic resonance[J]. Nature, 1973, 242(5 379): 190- 191.
  • 2Edelstein W A, Glover G H, Hardy C J, et al. The intrinsic signal-to-noise ratio in NMR imaging[J]. Magn Resort Med, 1986, 3(4): 604-618.
  • 3Schild H. Clinical high field MR[J]. Rofo, 2005, 177:621 -631.
  • 4Okada T, Yamada H, Ito H, et al. Magnetic field strength increase yields significantly greater contrast-to-noise ratio increase: Measured using BOLD contrast in the primary visual area[J]. Acad Radiol, 2005, 12(2): 142- 147.
  • 5Ugurbil K, Garwood M, Ellermann J, et al. Imaging at high magnetic fields: initial experiences at 4 T [J]. Magn Reson Q, 1994, 9(4): 259-277.
  • 6Ibrahim T S, Lee R, Abduljalil A M, et al. Dielectric resonances and B1 field inhomogeneity in UHFMRI: computational analysis and experimental findings[J]. Magn Reson Imaging, 2001, 19(2): 219- 226.
  • 7Hennig J. Ultra high field MR: Useful instruments or toys for the boys?[J]. Magn Reson Mater Phy, 2008, 21(1): 1 -3.
  • 8SIEMENS: Magnetom 7 T brochure[OL], https://www.siemens.com/7 T-MR1.
  • 9Vaughan J T, Adriany G, Snyder C J, et al. Efficient high-frequency body coil for high-field MRI[J]. Magn Reson Med, 2004, 52(4): 851-859.
  • 10Nova Medical[OL]. http://www.novamedical.com.

共引文献11

同被引文献2

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部