期刊文献+

An Efficient Approach of Processing Multiple Continuous Queries

An Efficient Approach of Processing Multiple Continuous Queries
原文传递
导出
摘要 As stream data is being more frequently collected and analyzed, stream processing systems are faced with more design challenges. One challenge is to perform continuous window aggregation, which involves intensive computation. When there are a large number of aggregation queries, the system may suffer from scalability problems. The queries are usually similar and only differ in window specifications. In this paper, we propose collaborative aggregation which promotes aggregate sharing among the windows so that repeated aggregate operations can be avoided. Different from the previous approaches in which the aggregate sharing is restricted by the window pace, we generalize the aggregation over multiple values as a series of reductions. Therefore, the results generated by each reduction step can be shared. The sharing process is formalized in the feed semantics and we present the compose-and-declare framework to determine the data sharing logic at a very low cost. Experimental results show that our approach offers an order of magnitude performance improvement to the state-of-the-art results and has a small memory footprint. As stream data is being more frequently collected and analyzed, stream processing systems are faced with more design challenges. One challenge is to perform continuous window aggregation, which involves intensive computation. When there are a large number of aggregation queries, the system may suffer from scalability problems. The queries are usually similar and only differ in window specifications. In this paper, we propose collaborative aggregation which promotes aggregate sharing among the windows so that repeated aggregate operations can be avoided. Different from the previous approaches in which the aggregate sharing is restricted by the window pace, we generalize the aggregation over multiple values as a series of reductions. Therefore, the results generated by each reduction step can be shared. The sharing process is formalized in the feed semantics and we present the compose-and-declare framework to determine the data sharing logic at a very low cost. Experimental results show that our approach offers an order of magnitude performance improvement to the state-of-the-art results and has a small memory footprint.
出处 《Journal of Computer Science & Technology》 SCIE EI CSCD 2016年第6期1212-1227,共16页 计算机科学技术学报(英文版)
基金 This work was supported by the National Natural Science Foundation of China under Grant No. 61173160, the National Basic Research 973 Program of China under Grant No. 2015CB358800, and the Scientific Research Program of the Higher Education Institution of Xinjiang Uygur Autonomous Region of China under Grant No. XJEDU2014S087.
关键词 data stream streams aggregation query sharing continuous query data stream, streams aggregation, query sharing, continuous query
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部