期刊文献+

(6×v,{3,4},1,Q)光正交码的构造 被引量:1

Construction of (6×v,{3,4},1,Q)-OOCs
下载PDF
导出
摘要 光正交码(OOC)是光码分多址通信系统的基础,二维光正交码比一维光正交码具有更好的性能。二维变重量光正交码目前研究结果少。本文利用斜Starter构造了两类二维变重量光正交码(6×v,{3,4},1,(4/5,1/5))-OOC和(6×v,{3,4},1,(2/3,1/3))-OOC,其中第一类是最优的,第二类码字个数比理论上界少3个。 Abstract. Optical orthogonal code (1-D OOC) is the basis of optical code-division multiple access system. Two-dimensional OOC (2-D OOC) has better performance than that of the 1-D OOC. Existing constructions of 2-D variable-weight OOC are rarely seen. In this paper, by using skew starters, two new classes of two-dimensional variable-weight OOC ( 6 X v, { 3,4},1, (4/5,1/5 ) )-OOCs and (6 X v, { 3,4},1, (2/3,1/3))-OOCs are constructed. The (6 X v, { 3,4},1, (4/5,1/5)-OOCs are optimal. (6 X v, { 3,4},1, (2/3,1/3))-OOCs fails to be optimal by missing three eodewords (two of weight 3 and one of weight 4) compared to the theoretical upper bound.
作者 王永真 余黄生 吴佃华 WANG Yongzhen YU Huangsheng WU Dianhua(College of Mathematics and Statistics, Guangxi Normal University,Guilin Guangxi 541004, China)
出处 《广西师范大学学报(自然科学版)》 CAS 北大核心 2016年第3期62-67,共6页 Journal of Guangxi Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(11271089) 广西自然科学基金资助项目(2014GXNSFDA118001) 广西高等学校高水平创新团队及卓越学者计划项目
关键词 二维变重量光正交码 严格循环填充 斜Starter 最优 2-D variable-weight optical orthogonal code strictly cycle packing (SCP) skew starter optimal
  • 相关文献

参考文献2

二级参考文献20

  • 1SALEHI J A. Code division multiple access techniques in optical fiber networks-Part I Fundamental principles[J]. IEEE Transactions on Communications, 1989,37 (8) : 824-833.
  • 2YANG Guu-chang. Variable weight optical orthogonal codes for CDMA networks with multiple performance require- ments[J] IEEE Transactions on Communications, 1996,44 (1) .. 47-55.
  • 3JIANG Jing,WU Dian-hua,FAN Ping-zhi. General constructions of optimal variable-weight optical orthogonal codes [J ]. IEEE Transactions on Information Theory, 2011,57 (7) : 4488-4496.
  • 4ZHAO Heng-ming,WU Dian-hua,FAN Ping-zhi. Constructions of optimalvariable-weight optical orthogonal codes [J]. Journal of Combinatorial Designs ,2010,18(4) : 274-291.
  • 5YIN Jian-xing. Some combinatorial constructions for optical orthogonal codes[J]. Discrete Mathematics, 1998,185(1/ 3):201-219.
  • 6WU Dian-hua, ZHAO Heng-ming,FAN Ping-zhi,et al. Optimal variable-weight optical orthogonal codes via differ- ence packings[J]. IEEE Transactions on Information Theory,2010,56(8) :4053-4060.
  • 7CHEN K,GE G,ZHU L. Starters and related codes[J]. J Statistical Planning and Inference,2000,86(2):379-395.
  • 8GE Gen-nian,YIN Jian-xing. Constructions for optimal (v,4,1) optical orthogonal codes [J]. IEEE Transactions on Information Theory, 2001,47 (7) : 2998-3004.
  • 9GE Gen-nian. On (g, 4 1 )-difference matriees[J]. Discrete Mathematics, 2005,301 (2/3) : 164-174.
  • 10SALE HI J A. Code division multiple-access techniques in optical fiber networks : part I: fundamental principles[J].IEEETransactions on Communications, 1989,37(8) :824-833. DOI: 10.1109/26.31181.

共引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部