摘要
We apply the strong-field Lewenstein model to demonstrate the high-order harmonic generation of CO2 with three vibrational modes(balance vibration,bending vibration,and stretching vibration) driven by an intense laser field.The results show that the intensity of harmonic spectra is sensitive to molecular vibrational modes,and the high harmonic efficiency with stretching vibrational mode is the strongest.The underlying physical mechanism of the harmonic emission can be well explained by the corresponding ionization yield and the time-frequency analysis.Finally,we demonstrate the attosecond pulse generation with different vibrational modes and an isolated attosecond pulse with a duration of about 112 as is generated.
We apply the strong-field Lewenstein model to demonstrate the high-order harmonic generation of CO2 with three vibrational modes(balance vibration,bending vibration,and stretching vibration) driven by an intense laser field.The results show that the intensity of harmonic spectra is sensitive to molecular vibrational modes,and the high harmonic efficiency with stretching vibrational mode is the strongest.The underlying physical mechanism of the harmonic emission can be well explained by the corresponding ionization yield and the time-frequency analysis.Finally,we demonstrate the attosecond pulse generation with different vibrational modes and an isolated attosecond pulse with a duration of about 112 as is generated.
基金
Project supported by the National Natural Science Foundation of China(Grant Nos.61575077,11271158,and 11574117)