期刊文献+

求解大型非对称线性方程组的不完全广义最小向后扰动法 被引量:1

An Incomplete Generalized Minimum Backward Perturbation Algorithm for Large Nonsymmetric Linear Systems
原文传递
导出
摘要 本文给出了求解大型非对称线性方程组的广义最小向后扰动法(GMBACK)的截断版本——不完全广义最小向后扰动法(IGMBACK).该方法基于Krylov向量的不完全正交化,从而在Krylov子空间上求出一个近似的或者拟最小向后扰动解.本文对新算法IGMBACK做了一些理论研究,包括算法的有限终止、解的存在性和唯一性等方面的研究;且给出了IGMBACK的执行.数值实验表明:IGMBACK通常比GMBACK和广义最小残量法(GMRES)更有效;且IGMBACK和GMBACK经常比GMRES收敛得更好.特殊地,如果系数矩阵是敏感矩阵,且方程组右侧的向量平行于系数矩阵的最小奇异值对应的左奇异向量时,重新开始的GMRES不一定收敛,而IGMBACK和GMBACK一般收敛,且比GMRES收敛得更好. This paper gives the truncated version of the generalized minimum backward error algorithm (GMBACK)--the incomplete generalized minimum backward perturbation al- gorithm (IGMBACK) for large nonsymmetric linear systems. It is based on an incomplete orthogonalization of the Krylov vectors in question, and gives an approximate or quasi-minimum backward perturbation solution over the Krylov subspace. Theoretical properties of IGMBACK including finite termination, existence and uniqueness are discussed in details, and practical im- plementation issues associated with the IGMBACK algorithm are considered. Numerical experiments show that, the IGMBACK method is usually more efficient than GMBACK and GMRES, and IGMBACK, GMBACK often have better convergence performance than GMRES. Specially, for sensitive matrices and right-hand sides being parallel to the left singular vectors corresponding to the smallest singular values of the coefficient matrices, GMRES does not necessarily converge, and IGMBACK, GMBACK usually converge and outperform GMRES.
作者 孙蕾
出处 《数学进展》 CSCD 北大核心 2016年第6期939-954,共16页 Advances in Mathematics(China)
关键词 非对称线性方程组 KRYLOV子空间方法 最小向后扰动 不完全正交化过程 广义最小向后扰动法 广义最小残量法 nonsymmetric linear systems Krylov subspace methods minimum backward perturbation incomplete orthogonalization process GMBACK GMRES
  • 相关文献

参考文献5

二级参考文献59

  • 1吴恩华,柳有权.基于图形处理器(GPU)的通用计算[J].计算机辅助设计与图形学学报,2004,16(5):601-612. 被引量:227
  • 2全忠,向淑晃.基于GMRES的多项式预处理广义极小残差法[J].计算数学,2006,28(4):365-376. 被引量:14
  • 3Saad Y, Schultz M H. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems[J]. SIAM Journal on Scientific and Statistical Computing, 1986, 7(3): 856-869.
  • 4Saad Y. Iterative methods for sparse linear systems [M]. 2nd ed. Philadelphia: SIAM, 2003.
  • 5Habu M, Nodera T. GMRES(m) algorithm with changing the restart cycle adaptively [C] //Proceedings of Algoritmy Conference on Scientific Computing. Heidelberg: Springer, 2000:254-263.
  • 6Wu E H, Liu Y Q. Emerging technology about GPGPU [C] //Proceedings of IEEE Asia Pacific Conference on Circuits and Systems. Los Alamitos: IEEE Computer Society Press, 2008:618-622.
  • 7NVIDIA CUDA C programming guide. Version 3. 1 [M]. San Jose: NVIDIA, 2010.
  • 8Wang M L, Klie H, Parashar M, etal. Solving sparse linear systems on NVIDIA tesla GPUs [M] //Lecture Notes in Computer Science. Heidelberg: Springer, 2009, 5544:864- 873.
  • 9Velamparambil S, MacKinnon-Cormier S, Perry J, et al. GPU accelerated Krylov subspace methods for computational electromagnetics [C] //Proceedings of the 38th European Microwave Conference. Los Alamitos: IEEE Computer Society Press, 2008: 1312-1314.
  • 10Ghaemian N, Abdollahzadeh A, Heinemann Z, et al. Accelerating the GMRES iterative linear solver of an oil reservoir simulator using the muhi-proeessing power of compute unified device architecture of graphics eards [C] // Proceedings of the 9th International Workshop on State-of-the-Art in Scientific and Parallel Computing. Heidelberg: Springer, 2008:156-159.

共引文献21

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部