期刊文献+

聚乙烯亚胺功能化多壁碳纳米管的制备及对硫化氢气体的吸附性能 被引量:3

Functionalization of Multi-Walled Carbon Nanotubes Using Polyethyleneimine and Its Application in H_2S
下载PDF
导出
摘要 采用聚乙烯亚胺(PEI)对多壁碳纳米管(MWCNTs)进行功能化,并用红外、热失重、拉曼对聚乙烯亚胺改性的碳纳米管进行表征,红外光谱和热失重曲线表明聚乙烯亚胺成功键合到多壁碳纳米管上,拉曼光谱中碳纳米管的D/G比(D峰面积比G峰面积)从0.8398变成1.2364,说明碳纳米管的缺陷程度明显增加,这种缺陷的增加是由碳纳米管表面引入了PEI导致的。利用紫外吸收光谱探究聚乙烯亚胺功能化的多壁碳纳米管(MWCNTs-PEI)对硫化氢的吸收及其可逆性。MWCNTs-PEI对硫化氢的首次吸收效率为0.16 mmol/g,2次重复吸收后仍有0.13 mmol/g的吸收效率,说明MWCNTs-PEI能够对硫化氢起到吸收作用并且具有很好的可逆性。 Functionalization of multi-walled carbon nanotubes using polyethyleneimine. The functionalized MWCNTs was characterized by FT-IR, Raman spectrum (RM) and thermal gravimetric analysis (TGA). Both FT-IR and TGA prove that polyethyleneimine and MWCNTs are successfully bonded with each other through chemical bond. Raman spectral data show that compared with MWCNTs, the D:G ratio of functionalized MWCNTs increases from 0. 8398 to 1. 2364. This increase in the D: G ratio indicates that the defect of MWCNTs is obvious augmented which is caused by polyethyleneimine bonding with MWCNTs. The H2S absorption and reversibility of MWCNTs-PEI were studied by UV spectrum. The H2S absorption efficiency is 0.16 mmol/g for the first time by MWCNTs-PEI and the absorption efficiency is still 0.13 mmol/g for the third time. It turns out that MWCNTs-PEI could absorb hydrogen sulfide and have an excellent reversibility.
出处 《高分子材料科学与工程》 EI CAS CSCD 北大核心 2016年第11期114-117,共4页 Polymer Materials Science & Engineering
基金 国家自然科学基金资助项目(41474142) 石油天然气装备教育部重点实验室开放基金(OGE201402-04)
关键词 多壁碳纳米管 聚乙烯亚胺 硫化氢 multi-walled carbon nanotubes polyethyleneimine hydrogen sul{ide
  • 相关文献

参考文献2

二级参考文献36

  • 1杨庆,梁伯润,窦丰栋,沈新元,郯志清.以乙二醛为交联剂的壳聚糖纤维交联机理探索[J].纤维素科学与技术,2005,13(4):13-20. 被引量:18
  • 2Arrigo R,H(a)vecker M,Wrabetz S,et al.Tuning the acid/base properties of nanocarbons by functionalization via amination[J].J Am Chem Soc,2010,132(28):9616-9630.
  • 3Zhou J,SuiZ,Zhu J,et al.Characterization of surface oxygen complexes on carbon nanofibers by TPD,XPS and FT-IR[J].Carbon,2007,45:785-796.
  • 4García-Martín J,López-Garzón R,Luz Godino-Salido M,et al.Ligand adsorption on an activated carbon for the removal of chromate ions from aqueous solutions[J].Langmuir,2005,21:6908-6914.
  • 5Carrott P JM,Carrott M M L,Nabais J M V,et al.Influence of surface ionization on the adsorption of aqueous zinc species by activated carbons[J].Carbon,1997,35:403-410.
  • 6Vinke P,van der Eijk M,Verbree M,et al.Modification of the surfaces of a gas-activated carbonand a chemically activated carbon with nitric acid,hypochlorite,and ammonia[J].Carbon,1994,32:675-686.
  • 7Xu Y J,Weinberg G,Liu X,et al.Nanoarchitecturing of activated carbon:facile strategy for chemical functionalization of the surface of activated carbon[J].Adv Funct Mater,2008,18:3613-3619.
  • 8Su D S,Chen X,Weinberg G,et al.Hierarchically structured carbon:synthesis of carbon nanofibers nested inside or immobilized onto modified activated carbon[J].Angew Chem Int Ed,2005,44:5488-5492.
  • 9Arup K S,Dennis C.Important process variables in chromate ion exchange[J].Environ Sci Tochnol.,1986,20:149-155.
  • 10Gogotsi Y.Carbon Nanomaterials[M].Boca Raton:CRC,2006.

共引文献32

同被引文献18

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部